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Abstract
Creating Intelligent Agents with Reinforcement Learning

by Elan VAN BILJON

English

Reinforcement learning is a relatively new and undiscovered branch of machine learn-
ing. However, reinforcement learning has recently become very popular. Even so, very
few understand what reinforcement learning is and possible applications thereof. This
project report serves to give an overview of reinforcement learning and will explain
some of the recently developed approaches, such as deep Q learning. Throughout this
report, we build our understanding of reinforcement learning until we reach the level
of deep Q learning. We then apply a deep Q network to a computer game, Code vs
Zombies. While our implementation stabilised on a suboptimal policy when playing
the full game, it was able to find optimal policies for constrained versions. In the pro-
cess, we experiment with and optimise some of the leading approaches in reinforce-
ment learning.

Afrikaans

Versterkingsleer is ń relatief nuwe tak van masjienleer. Maar versterkingsleer het on-
langs baie gewild geraak. Tog verstaan baie min mense wat versterkingsleer is en
moontlike toepassings daarvan. Hierdie projekverslag dien om ń oorsig van versterk-
ingsleer te gee en sal sommige van die onlangs ontwikkelde tegnieke, soos diep Q leer,
verduidelik. In hierdie verslag bou ons ons begrip van versterkingsleer tot ons die vlak
van diep Q leer bereik. Ons pas dan ń diep Q-netwerk aan op ń rekenaarspel, Code
vs Zombies. Terwyl ons implementering gestabiliseer het op ń suboptimale beleid ty-
dens die speel van die volle speletjie nie, kon dit optimale beleide vind vir beperkte
weergawes. In die proses eksperimenteer ons met, en optimaliseer sommige van, die
leidende tegnieke in versterkingsleer.
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1

1 Introduction

“Machine learning is a field of computer science that gives computers the ability to
learn without being explicitly programmed” (Samuel, 1959). We use machine learning
to find underlying patterns in data and to make predictions about the world around
us. Typically these models are myopic (do not take future consequences into account)
and their predictions are instantaneous. have no impact on future predictions. Rein-
forcement learning is the branch of machine learning that addresses problems where
sequential decisions need to be made. As such, current predictions do affect future
predictions. Put another way, reinforcement learning is the branch of machine learn-
ing that is concerned with behaviours.

1.1 Motivation

Our entire life is a series of decisions. A science that attempts to aid us in making these
decisions is, therefore, potentially very valuable. Reinforcement learning is being ap-
plied in many real life scenarios that have large impacts on our lives. The applications
range from trying to decide which medications to give patients, and at what stage
of their treatment, to planning how one should invest your money to ensure enough
money to retire comfortably (Shin and Markey, 2006). This project may apply the tech-
niques on a seemingly inconsequential problem, a computer game, but the learnings
gained from this application are still valuable in itself and could easily be applied to
real world problems.

1.2 Background

This section will give a brief overview of the knowledge needed to understand this
project report. All the content covered in this section will be expanded on and ex-
plained in detail in future chapters.



2 Chapter 1. Introduction

1.2.1 Reinforcement Learning

As previously stated, reinforcement learning is the branch of machine learning that
deals with modelling or learning behaviour. We call this learnt behaviour the policy of
our agent. The agent is the entity that will be making the decisions, our reinforcement
learning model. The agent is given some task that it must accomplish by acting on its
environment. Environment is both the eyes of the agent and the entire world around
it. The agent only knows what the environment tells it. Thus, especially in cases where
the environment is stochastic, learning can be very difficult. The information between
the agent and the environment is passed in the following manner: the environment
tells the agent what the configuration of the environment (termed state) is, the agent
performs an action and the environment then tells the agent how good its action was
(a value termed the reward) and tells the agent what the new state of the environment
is. This process is depicted graphically in Figure 1.1.

FIGURE 1.1: The Agent Environment Loop: the cycle of the agent taking
actions and the environment telling the agent how the state changed and

how good the action was (reward value).

One may notice that this sounds very similar to Markov decision processes. That
is exactly what we model these interactions as. Our agent finds itself in some state,
s. It performs some action, a. The environment changes by following some transition
function, T. Then the environment gives feedback to the agent in the form of a reward
value, r, and the next state the agent finds itself in, s′. The way the agent moves from
state to state is its policy, π.

The main goal of reinforcement learning is to discover the optimal policy or the
behaviour that best completes the task at hand. There are three main approaches to
doing this: value-based, model-based and policy search methods. The goal of value-
based methods is to determine what the best policy by assigning a value to each state.
The policy would then be to reach the states with highest value. Model-based learn-
ing is the technique whereby we have our agent learn a internal approximation of
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the environment. The agent can then predict how the environment will change when
performing certain actions and, thus, has a mechanism to plan sequences of actions.
Instead of using tools to infer the best policy, policy based approaches directly solve
the policy. This is typically done by creating a parameterised function for our policy
and tweaking the parameters until the optimal policy is found.

Model-based Methods

Model-based methods try to use a supervised learning approach to model the transi-
tion, T, and reward, R, functions. In the real world environments are stochastic and the
agent’s internal approximation of the environment is never completely accurate. Thus,
we model these functions probabilistically. We define our transition function to be of
the form: T(s, a, s′) = P(st+1 = s′|st = s, at = a), where s and st+1 are the states the
agent found itself in at time t and t + 1, respectively, and at is the action it performed
to transition between these states. As such, the transition function is the probability of
transitioning to state s′ from state s after performing action a. We define our reward
function as follows: R(s, a) = E{rt|st = s, at = a}, where rt is the reward received after
performing action at. Thus, the reward function is the reward we expect to receive if
we perform action a while in state s.

Value-based Methods

The value that is assigned to a state is directly linked to the rewards the agent receives
for transitioning to that state. Similar model-based approach, the value function also
assigns value to a state probabilistically. We define the value function to be of the form:

V(s) = E{Rt|st = s} = E

{
∞

∑
t=0

(γt · r(st, st+1))

}
, (1.1)

where V is the value function, γ is termed the discount factor, Rt is known as our
accumulated reward and r(st, st+1) is the reward we get for transitioning from state st

to state st+1. Because of our uncertainty about our environment and our model we add
a coefficient that discounts the value of future states. The accumulated reward is the
average payoff we can expect if we continue to interact with the environment in the
same manner (under the same policy). We can now see that our value function is our
expected accumulated reward.
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Because we cannot solve this function using a supervised approach, we redefine
our model so that it can be updated iteratively. Richard Bellman is known as the father
of dynamic programming and he worked on control problems of a similar nature. He
devised a way to represent these functions iteratively. We call these representations
Bellman equations:

V(s) := R(s, a) + γ ·∑
s′
(T(s, a, s′) ·V(s′)). (1.2)

We can now allow our agent to interact with the environment and use the information
it gathers to update its value function. With each iteration it will get closer to the value
function that gives the optimal policy.

Policy Search Methods

Researchers that using a value-based technique is too indirect. The policy search ap-
proaches aim to directly solve the policy function. We define the policy function in
two general forms, as a function that maps from states to actions, π(s) = a, and as a
function that gives the probability of performing an action in a certain state π(s, a) =
P(a|s). Generally we favour the probabilistic approach. However, this is difficult and
often impossible to solve directly since these models rarely contain closed form so-
lutions. Thus, we parameterise the policy function and treat this as an optimisation
problem:

πθ(s, a) = P(a|s, θ), (1.3)

where θ are the parameters (or weights) of the parameterised policy function. We now
let our agent interact with the environment and find the set of weights that deliver the
highest reward.

1.2.2 Q Learning

Because the previous form of our value function did not take the actions the agent
takes into account, we are not utilising information we have access to. Q learning is
a value-based approach that deals with action-value functions. As the name suggests,
this function assigns value to pairs of states and actions:

Q[i+1](st, at) := rt + γ ·max
a

Q[i](st+1, a), (1.4)
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where Q is the action-value function, termed the Q function and the superscript [i]
shows that this is the ith iteration of the function. This function is very similar to the
value function defined previously, except for the introduction of the max operator.
Simply put, this lets us link our current state value to the value of the most valuable
adjacent state. This makes intuitive sense as if we are acting optimally, we will move
from our current state to the one that will provide the best cumulative reward. This
function lets us utilise all the knowledge at our disposal to infer the optimal policy.

1.2.3 Function Approximation

Because it is difficult and costly to solve for the true form of the previously mentioned
equations, we employ techniques to approximate them instead. The classic approach
is to use a linear set of basis functions to approximate our value or policy functions.
However, this approach has limitations in terms of the dimensionality of the input data
and with the types of functions it can approximate. Thus, newer function approxima-
tion methods, such as neural networks, have become more favourable recently and
have been applied to solve a variety of interesting problems.

Linear Combination of Basis Functions

This method selects a set of functions, weight them with some coefficients and sum
them to produce an approximation of the desired function:

f (x) ≈ f̂ (x, θ)

f̂ (x, θ) =
n−1

∑
k=0

wk · qk(x), (1.5)

where x is the input, f (x) is the function we want to approximate, f̂ (x, θ) is the ap-
proximation of f (x), θ is the set of coefficients (or weights), n is the number of basis
functions, wk and qk are the corresponding coefficient (or weight) and basis function,
respectively (Konidaris, Osentoski, and Thomas, 2011). This method is very effective
for many problems but cannot represent nonlinear relationships between basis func-
tions. Neural networks do not have this limitation.
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Neural Networks

To understand neural networks one need far more information than we can fit in this
introduction. Thus, we elaborate in detail in Chapter 5 and we give a brief overview
here. A Neural network is a model that takes inspiration from the structure of the hu-
man brain. Both the brain and neural networks are made out of neurons and synapses.
Neurons are nodes where computation occurs and synapses are pathways (or edges)
through which data flows. By connecting a series of nodes and edges together we can
construct a sort of computational graph (Figure 1.2).

FIGURE 1.2: A graphical representation of a neural network. This compu-
tational graph like structure maps from a three dimensional input to a two

dimensional output.

With this technique we can approximate any function, both linear and nonlinear.
This is one of the largest reasons why neural networks have been so widely adopted.

1.2.4 Deep Q Learning

Deep Q learning is the name given to the technique whereby we approximate our Q
(action-value) function using a neural network. Our approximated Q function can be
expressed mathematically in the following manner:

Q̂(st, at, θ[i+1]) := rt + γ ·max
a

Q̂(st+1, a, θ[i]), (1.6)

where θ is the information about the neural network. When we use neural networks
to approximate our Q function, it takes the following form:

Q̂(st, at, θ[i]) = NN(st, at, θ[i]), (1.7)

where NN represents the function that the neural network applies. This has shown to
be a very powerful technique with high real world capability.
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1.3 Literature Synopsis

As this project report is largely a review of literature in the field of reinforcement learn-
ing, Chapter 2 discusses one of the most recent and important papers in deep Q learn-
ing to date. The paper discussed is Human-level control through deep reinforcement
learning (Mnih et al., 2015). We explain the problem that they address, and optimisa-
tions and approaches they make use of. Their work is especially important in relation
to this project report as it outlines the approach we followed and attempted to improve
upon, in certain aspects.

In this paper Mnih et al. “develop a novel artificial agent, termed a deep Q-network
(DQN), that can learn successful policies directly from high-dimensional sensory in-
puts using end-to-end reinforcement learning”. They test the agent on Atari 2600
games and show that their agent out performs all previous algorithms, and a pro-
fessional human games tester, across 49 games. The structure of the model and the
hyper-parameters were kept constant over all games. This shows that this is a robust
approach that can generalise to, and excel in, different domains.

The paper outlines cutting edge methods and optimisations such as: frame skip,
experienced replay and target network update delay.

1.4 Problem Statement

In this section we will give a brief description of the problem our program is to solve.
This will be elaborated on in Chapters 7 and 8. We are tasked with creating a program
that can play a computer game. The computer game in question is called Code vs
Zombies. It is designed such that players write a program to control the shooter entity.
This game is a top down view onto a two dimensional plane. This plane is inhabited
by one shooter and a number of humans and zombies. The main objective of the game
is to save as many humans from the zombies as possible by eliminating all zombies
through controlling the shooter. The player receives a score dependent on the number
of living humans and the number of zombies killed in each time step. The secondary
objective is to maximise this score. There are two sets of objectives to be discussed in
this project report. Firstly, the objectives that have to do with the practical aspect of the
project and finally the objectives of this document itself.



8 Chapter 1. Introduction

1.4.1 Project Objectives

The practical aspect of the project revolves around programming a reinforcement learn-
ing model that can solve the problem described in the problem description: create an
agent that can play the Code vs Zombies game. To create a program that can infer
what reasonable moves could be made when only given the current configuration of
the game and no rules about how the game works. To leave it at this would be too
vague. Thus, we broke this objective into milestones:

• create a program that always produces valid output to the game environment

• create a program that makes moves that do not seem random to human observers

• create a program that achieves a higher score than a program that performs ran-
dom moves

• create a program that will not lose a game that it is reasonably expected to win

• create a program that achieves a score higher than most human players

• create a program that achieves a score higher than traditional game AI heuristics

1.4.2 Project Report Objectives

The objectives of this document are of a different nature. This project report serves as
an account of the work we have done in order to achieve the project objectives and,
perhaps more importantly, give the reader the knowledge required to build on this
work, should they chose to do so. This can be divided into the following objectives:

• give the reader an intuitive understanding of what reinforcement learning is and
what problems it can be applied to

• give the reader an in depth understanding of the value-based approach in rein-
forcement learning, the Q learning method specifically

• give the reader enough information to implement a value-based reinforcement
learning program themselves

• give the reader an extensive understanding of what function approximation is,
how it can be implemented and when one would use it, all within the reinforce-
ment learning domain
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• give the reader a good understanding of how to approximate functions with neu-
ral networks and how they can be used with Q learning to form deep Q learning

• give the reader the necessary information to allow them to implement a deep Q
learning reinforcement learning agent

• give the reader enough of an understanding of the field and methods we used to
be able to understand our results and analysis thereof

1.5 Contributions

This section serves as an account of the work we did on this project that can be consid-
ered new, or as contributions to the field of reinforcement learning, or otherwise no-
table ways in which we achieved our project aims. These contributions are discussed
in detail in Chapters 10 and 11 and the key aspects are mentioned in the overview
section of this chapter.

• network update delay - a variation on Deep Minds target network update delay

• full replay memory sampling - a variation on the industry typical approach of
sampling from replay memory

• reward normalisation - we could not find any indication of reward values typ-
ically used in the field, thus we did some investigation and have formed our
approach and theory, also discussed in Chapter 8

1.6 Overview

We begin in Chapter 2 by discussing state of the art approaches to similar problems.
We look at the work done by researchers at Deep Mind on deep Q learning on Atari
games.

In Chapter 3 we start with the basics. We build our knowledge of reinforcement
learning up from scratch so that we can understand all the steps in arriving at the deep
Q learning approach. We learn that the agent’s interaction with the environment can
be modelled as a Markov decision process. We learn that reward functions are very
important and difficult to construct. Finally, we learn about the three main approaches
in reinforcement learning: model-based, value-based and policy search methods.
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We start to delve more deeply in value-based reinforcement learning approaches
in Chapter 4. We learn, not only how to give value to a state, how to give value to
actions performed in specific states. We also learn how to use dynamic programming
techniques to solve for the optimal value function iteratively. We learn that there are
limitations to this approach in terms of generalising between seen and unseen states
and when dealing with high dimensional input data.

We start our exploration of more cutting edge techniques in Chapter 5 by learning
about function approximation. We learn ways of approximating functions using linear
combinations of basis functions and by using neural networks. We learn that by using
a linear combination of basis functions we can often solve for the optimal coefficients
in one step but that we cannot model nonlinear relationships between basis functions.
We discover that neural networks can out perform in terms of modelling nonlinearities
but we cannot solve for the optimal (or near optimal) coefficients in one step and must
employ iterative techniques to do so.

In Chapter 6 we bring everything we have learnt thus far together to form the con-
cept of deep Q learning. We discover that deep Q learning is the technique whereby
we use neural networks to approximate our Q function. We discuss the mathematics
behind this approach and learn how to implement it. Lastly, we learn about optimi-
sations that can be made to the structure of our neural network to allow for assigning
values to all actions associated with each state.

We go on to fully understand the Code vs Zombies problem and how its environ-
ment is constructed in Chapters 7 and 8. We learn what the specific rules of the game
are that the agent must learn itself. We learn how the state of the environment is en-
coded, what from the agent must present its actions in and how the rewards for actions
in states is calculated. We also discuss possible problems that the agent will encounter
when learning from this information.

In Chapter 9 we explain how we developed the software for the agent. This in-
cludes the common software engineering practices currently used in industry. We ex-
plain the modular nature of our code, the inheritance structure for out objects and
what tools and application program interfaces (APIs) we used to develop the code for
this project. We go through software engineering practices that resulted in more sta-
ble code, that contains fewer errors (one can never claim to have no errors). Finally,
we explain development techniques that increased the rate of code production while
keeping code functional.

We explain what implementations issues arose in the development of this project
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and how they were handled in Chapter 10. These issues include the fact that Q learning
(and, by extension, deep Q learning) are designed for discrete action spaces and the
Code vs Zombies problem has a continuous action space and the fact that the state
information actually decreases as the game progresses but we must present a fixed
size state encoding to the neural network. We also discuss optimisations that we made
to our code throughout the development of the project. They include more effectively
storing information that can be used later and generating initial game configurations
in a way that our agent can learn more effectively.

Our experiments, and results there of, are explained in depth in Chapter 11. First
we explain how we conducted our experiments: by tracking our agent’s performance
as it trained. We the explain the tests we used to find some networks than performed
decently on the Code vs Zombies problem. At this point we explain a very important
concept experiment and experiment. One of the things we are trained to do as engi-
neers is to look more deeply into work others have done, to ask why they have done it
in that particular way and then ask if there is a way to do it better. We did exactly this
with Deep Mind’s target network update delay training method.

We believed there were some optimisations to be made to their method. Thus,
we trained our agent using target network update delay and we trained our agent
using our method, network update delay. The details of both methods can be found in
Section 11.0.4. We expected our method only to reduce training time but it offered more
than that. The agent trained with network update delay also learnt faster with respect
to the number of episodes played and provided better final performance (Figure 1.3).
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FIGURE 1.3: Validation scores being tracked over time during training for
the two training methods. We see that network update delay seems to

promote faster learning and deliver better performance.

We next questioned the current techniques of choosing what data we give our
agents to learn from. The current standard is to select a number of data points uni-
formly from the data gathered while training. We noticed that this process is very
computationally expensive and was the bottle neck for our system. Thus, we decided
to reduce the number of data points we store during training and to train on all of the
gathered data. We call our approach full replay sampling. This reduced training times
and, surprisingly, increased the agents learning rate with respect to the number of seen
episodes.

We go on to analyse different actions we can give our agent to use to solve the
problem. We see that our original and most simple approach outperforms the rest.
Similarly, we test our agent on numerous constrained versions of the Code vs Zombies
problem. We discover that as the size of the state encoding increases the agent’s chance
of converging to the optimal solution decreases. We also see that the reward function
we develop for the environment performs better than others.

After all of our experiments, we select the architecture we believe to have the best
chance of solving the problem and test it on a constrained version of the problem. We
see that it does not converge to the optimal policy for this constrained version (Figure
1.4). Thus, our agent is not capable of fulfilling all of the objectives laid out in Section
1.4 for the full problem. However we show that it does fulfil all stated objectives for
some constrained versions of the problem.
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FIGURE 1.4: Validation scores being tracked over time during training for
our final model. We see that it performs significantly better than a random
agent but does not find the optimal policy for this constrained version of

the problem.

Finally we summarise our findings and make recommendations for follow up work
done on this problem in Chapter 12. We conclude that our agent can not solve the full
Code vs Zombies problem. We then go on to recommend adaptions to our approach
that may lead to better results. These recommendations include using a model-based,
policy search approach.
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2 Literature Study

In this chapter we explain some of the current leading work done in reinforcement
learning. We go over the basics of reinforcement learning in later chapters and work
our way back to these approaches. In this chapter we discuss the paper, Human-level
control through deep reinforcement learning, (Mnih et al., 2015) at a high level. We
explain the problem that Mnih et al. address, and optimisations and approaches they
make use of. This work is especially important in relation to this project report as it
outlines the approach we followed, and attempted to improve upon in certain aspects.

2.1 Abstract

In Human-level control through deep reinforcement learning Mnih et al. “develop a
novel artificial agent, termed a deep Q-network (DQN), that can learn successful poli-
cies directly from high-dimensional sensory inputs using end-to-end reinforcement
learning”. They test the agent on Atari 2600 games and show that their agent out
performs all previous algorithms, and a professional human games tester, across 49
games. The structure of the model and the hyper-parameters were kept constant over
all games. This shows that this is a robust approach that can generalise to, and excel
in, different domains.

Mnih et al. structured their agent such that it took preprocessed pixel data as input
and produced an action-value vector as output. Using the pixel data aided them in
keeping the network the same across all tests. When one encodes raw information
from different domains it can comprise of varying amount of data. This would lead to
different sized encodings across games and different sized input layers to the network.
However, all Atari 2600 games display using the same number of pixels, thus, can be
encoded in a fixed size structure. The action-value vector contained an entry for each
of the actions one can perform using the Atari 2600 controls. The largest value in the
action-value vector corresponds to the action the agent predicts to perform 2.1.
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FIGURE 2.1: The architecture of the DQN model. It takes pixel data as
input, passes this through several convolutional layers, then through a

fully connected layer and gives action-value pairs as output.

Mnih et al. used a deep convolutional neural network, a machine learning model
widely used on pixel data, to approximate the optimal action-value function. As such,
they used a deep Q learning approach. The methods and optimisations they use are
insightful and provide performance increases and reductions in training times. Thus,
these methods are the main focus of this literature review.

Reward Clipping

“As the scale of scores varies greatly from game to game”, Mnih et al. made a decision
to clip all positive rewards at 1, all negative rewards at -1 and left 0 rewards untouched.
This is done to limit the the magnitude of the error derivatives in the network and
allows for the use of the same learning rate across multiple games. The weakness of
this method is that the agent has lost any sense of which action may be better when
presented with two positively rewarded actions.

Frame Skip

To allow for faster training and simulation, a simple frame-skipping technique was
used. The agent is presented with every fourth frame and must select an action based
on this frame. This action is then repeated for four frames and the process is repeated.
Because the simulation time for the Atari 2600 emulator is negligible compared to one
forward pass of DQN, this allowed the agent to train on four times more games with a
marginal time increase.
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State Rolling

Because it is impossible to understand the state of some Atari 2600 games when given
only one frame, Mnih et al. employed a technique we call state rolling. This is the
process of keeping track of a number of sequential previous states your model has
been presented with and concatenating them into a new state representation. This
new state representation is then presented to the agent. This gives the agent a temporal
understanding of the games.

Experienced Replay

In the most classic example of reinforcement learning the agent updates its policy only
from the current observation. Experienced replay allows agents to store past observa-
tions and periodically train on a sample from this store. This is especially effective as
the Bellman equation requires iterations to propagate information received from new
data across the action-value function.

Target Network Update Delay

The DQN agent is comprised of two identical networks, a prediction network and a
target network. The prediction network is used to assess each state and decide on
actions. State, reward and action data is collected according to the prediction network’s
policy. This data is used to update the target network. After a number of updates of
the target network, the weights are copied from the target network to the prediction
network. This avoids oscillation of policies and leads to solution stability.

2.2 Perspective and Learnings

This paper provided us with an excellent source of techniques and approaches that
could be employed to improve the performance and training efficiency of our agent.
We go on to try and test the methods outlined in this paper on the Code vs Zombies
problem.
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3 Reinforcement Learning

This chapter introduces the concept of reinforcement learning (RL) and the basic ap-
proaches that it consists of: model-based, value-based and policy search approaches.
We gain the necessary background knowledge required to understand the model that
this project report describes. We will first define what RL is and the terminology asso-
ciated with it. We will then go on to compare RL to other classes of machine learning.
Finally, we will go through the different approaches used in RL.

We get an in depth understanding of value-based methods and an intuitive under-
standing of model-based and policy search methods. This will enable us to compare
the model described in this project report to other approaches.

We use RL in the following scenario: an entity exists that needs to interact with
the environment it is in to accomplish a specific task. This is easily explained with
an example. Imagine a mouse is put in a small maze. The mouse can be considered
as the entity (usually called an agent), the maze would be the environment and the
specific task is to find the centre of the maze and eat the piece of cheese found there.
The mouse interacts with the maze by running through it, making decisions and per-
forming actions, such as turning left or right. The reward for completing the maze is
the piece of cheese. However, this reward is only received when the mouse has found
the centre of the maze, thereby making the final decision. This means that most (all
but one) of the mouse’s decisions are made with no immediate reward being received
for them. Yet the mouse must still identify which decisions to make, to complete the
task. This is the basic premise of RL. We want to create a model that acts as an agent
in an environment and can complete the given task by making a series of sequential
decisions, preferably the optimal set of decisions. Thus, RL is the branch of machine
learning (ML) that addresses sequential decision making and behaviour modelling.

Unlike the case where there would be immediate direct feedback for each action,
there are challenges that are associated with learning how to make good sequential de-
cisions. Some include the questions of: When we get feedback, how do we know which
actions in the sequence it corresponds to? How do my decisions affect the future? How
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do my actions change my environment?
Reinforcement learning is the branch of machine learning that exists in the grey

space between supervised and non-supervised learning. In supervised learning you
make one decision: “given this input, how can I best reproduce the given output?”.
Every input has a corresponding output to learn from, in other words, each input has
a label. In the case of non-supervised learning you also make one decision: “how can
I best divide the given data into meaningful groups?” or “given what I have learned
from the data, which group does this observation best fit to?”. In both of these cases,
the decision is not based on what the models earlier predictions. Whereas, in the case
of reinforcement learning the model must be able to make sequential decisions with
little feedback. We seldom get a label telling our model if the decision it made was a
good one and most of the time we get no label.

Before we can discuss how the agent learns to perform tasks, we must introduce
some terminology and notation. The current configuration of the environment is termed
the state. The way the agent decides to interact with the environment is termed the
action. The agent’s feedback from the environment is in the form of a scalar value,
termed the reward. The state, the action performed and the reward received at time t
are denoted by st, at and rt, respectively.

Performing at while in state st will result in the environment changing and will
produce a new state and reward, st+1 (or s′) and rt+1, respectively. Thus, we can model
this as a Markov decision process (Figure 3.1). This brings a large body of theory that
can be used to solve the problem at hand (Intro to reinforcement learning).

We are now able to model this setup in the following fashion: We begin in some
state, s, we make some action, a, our environment changes by some transition function,
T, and we get feedback according to some reward function, R. A transition function
is the equation that tells us how the environment changes when a certain action is
performed. It typically looks like this: T(s, a, s′) = P(st+1 = s′|st = s, at = a) (Intro
to reinforcement learning). The reward function tells us what reward we expect to get if
we are in a certain state and we perform a particular action. It is typically of the form:
R(s, a) = E{rt|st = s, at = a}.

If we model this setup as a Markov decision process, we can make the first order
Markov assumption:

P(st+1|st) = P(st+1|s0, s1, ..., st). (3.1)

Intuitively, this means that our next state is only dependent on our current state, not
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FIGURE 3.1: Graphical representation of a Markov decision process. It
shows that taking action a0 while in state s0 results in transitioning to state
s1, taking action a3 while in state s2 results in transitioning to state s0 and

so on.

the full history of states we have seen. This simplifies the task and makes modelling it
easier.

The behaviour or strategy of our agent is termed its policy. Many things depend on
our policy. For instance, the rewards we get greatly depend on our policy. We represent
this mathematically in the following manner: Rπ(s, a), where π represents our policy
function. The policy function is typically of the form π(s) = a. As such, it is a mapping
from states to actions. In this case we say the reward function gives us our expected
reward if we act under policy π (Intro to reinforcement learning).

As the creator of this agent, we need to choose a reward function that makes it very
clear what the task is we want completed and how we want it to be completed. This is
deceptively difficult feat to achieve. Imagine we task a computer with finding a way
of eliminating the common cold. The computer could decide that the most efficient
way of doing so would be to eradicate all human life. This is clearly not the intended
outcome. Anecdotes such as this have spurred conversations in artificial intelligence
safety and illustrate the fact that we need to pay special attention to our choice of
reward function.

Even if our reward function accurately encompasses our goal, we run into another
challenge. If we leave our agent to train, it will start to accumulate some information
about the environment. The challenge is knowing at what stage we should start this
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information. We may not know if the information we have gathered thus far is repre-
sentative of the ground truth. This issue is known as the exploration vs exploitation
problem. While we are gathering information and constructing notions about the en-
vironment, we are exploring. At some stage we want to start exploiting what we know
to discover more by directing our exploration. We generally do this by defining a vari-
able, ε, which represents our probability of exploring by performing a random action.
We typically start with ε = 1 and slowly reduce it. This results in our agent initially
performing entirely random actions, then slowly starting to use what it has learnt. We
do not let ε reach zero while we are training as this may prohibit learning. Once we
deploy our agent to perform the task at hand, we set ε to zero and thus it always per-
forms the action it thinks is best. An algorithm that follows this approach is said to be
ε-greedy (Intro to reinforcement learning).

Now that we have a high level idea of how to train these agents, we need to decide
exactly what we want them to learn. As stated previously we want the agent to learn
a policy (or behaviour) that completes the task. But more than that, we want them to
complete the task in the best possible way. Thus, we want them to learn the optimal
policy, the behaviour that best completes the task. We denote the optimal policy by π∗.

The next challenge to address is identifying how to learn the optimal policy. One
way to do this is to construct a function that can tell us how desirable a state is to
be in. We term this class of functions value functions. We measure the value of a
state by predicting the rewards the agent would accumulate if it visited this state and
acted under its current policy. However, we are not always certain that we can receive
these rewards as the environment may be inherently stochastic. As such, we introduce
the discount factor, γ ∈ (0, 1], to achieve a trade off between immediate and delayed
rewards. We express the value function mathematically in the following form:

Vπ(s) = Eπ{Rt|st = s} = Eπ

{
∞

∑
t=0

(γt · rπ(st)(st, st+1))

}
. (3.2)

In this equation we have become more specific with our reward values. Previously we
simply denoted a reward received at time t by rt. Now we denote the reward received
by transitioning from state st to st+1 while acting under policy π(st) by rπ(st)(st, st+1).
Further more, we denote the accumulated reward by Rt (Intro to reinforcement learning).



Chapter 3. Reinforcement Learning 21

3.0.1 Value-based Methods

Now that we are familiar with the idea of a value function, we can move onto the class
or reinforcement learning that uses them. Remember, in this approach the agent learns
how to predict the value of the current state of the environment and this is used to infer
a policy.

Once we have an accurate mapping of state value, we can adopt a policy that is to
look at states adjacent to our current state and greedily pick the immediate best one.
Thus, we shift our focus to obtaining this accurate mapping, known as the optimal
value function, V∗(s). Richard Bellman is known as the father of dynamic program-
ming and he worked on control problems of a similar nature. He devised a way to
represent these functions iteratively. We call these representations Bellman equations.
As we cannot solve for V∗(s) directly, we use a Bellman equation to rewrite the value
function in recursive form so that we can solve for it iteratively. The value function
now becomes:

Vπ(s) := R(s, π(s)) + γ ·∑
s′
(T(s, π(s), s′) ·Vπ(s′)), (3.3)

remember our policy is of the form π(s) = a and our transition function (T(s, a, s′))
maps to a probability (Intro to reinforcement learning).

As previously stated, we want to find the optimal value function. This can be done
by changing 3.3 slightly:

V∗(s) := max
a
{R(s, a) + γ ·∑

s′
(T(s, a, s′) ·V∗(s′))}. (3.4)

To explain 3.4 intuitively: we pick the action that maximises the sum of the immediate
reward (R(s, a)) and the sum of the values of all adjacent states (those where T(s, a, s′)
is greater than zero), weighed by γ (Intro to reinforcement learning).

From this optimal value function we can infer the optimal policy. We will discuss
this method in more depth in later chapters as it is the focus of this project report. First,
we will go over the two other main classes of reinforcement learning algorithms.

3.0.2 Model-based Method

When discussing value-based methods, we saw the transition function, T, present in
our value function, V. In later chapters we will show how to remove our dependance
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on T. However, it contains valuable information about the environment and we may
well want to use it. This is what model-based methods deal with, learning a model (or
internal approximation) of the environment.

Having a model of our environment enables our agent to ask it questions, for in-
stance: “How will my environment change if I perform this action?”. This allows our
agent to plan for the future. Not only that, the agent is able to quantify its uncertainty
for any given transition between states and adjust its policy accordingly. It is more
practical to use a model-based approach when your agent must interact with the phys-
ical world. Imagine we are trying to teach a robot to make tea. This robot is likely very
expensive and we would not want it to learn that pouring water on itself is bad by
repeating it many times. Thus, we have it simulate its actions using its internal model.
This way the agent can develop sensible policies with less interaction with the physical
world.

This begs the question: “why did we not use a model-based method in this project
report?”. We decided early on to use the state of the art model free (without an in-
ternal environment model) value-based methods as an initial approach to the Code vs
Zombies problem as they have solved the most interesting problems to date.

Let us briefly state what we already know about model-based methods. We have
a transition function (T(s, a, s′) = P(st+1 = s′|st = s, at = a)) that describes how
our environment changes with our agents actions. We also have a reward function
(R(s, a) = E{rt|st = s, at = a}) that provides feedback to our agent. In model-based
methods we attempt to learn the transition and reward functions. We set this up as a
supervised learning problem.

We have our agent perform many random actions in its environment and collect
information about the state transitions and the received rewards. We then construct a
model that learns our transition function from the state transition data and similarly
for our reward function, with the reward data.

The more astute reader will notice that we are missing something. We have a model
of our environment that we can use but we do not have a system in place to learn
the policy. We are still dependant on using a value-based or policy search method in
conjunction with our model-based method. Since we have already discussed value-
based methods, let us move onto policy search methods.
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3.0.3 Policy Search Method

In the previously mentioned methods, we would have our agent learn a value func-
tion (Vπ(s)) that is dependent on our policy function (π(s) = a). In this way we can
infer our policy from our value function. One might ask: “why not cut out the mid-
dle man?”. The value function is a useful tool in certain applications but it is indeed
possible to learn the policy directly.

As with all of the approaches we have discussed thus far, this method has advan-
tages and disadvantages. This method is particularly effective in continuous action
spaces and high dimensional spaces. An action space being the available set of actions
our agent can perform, this can be discrete (for example: turn, left, move 1 unit north)
or continuous (for example: move to x co-ordinate 4.2). Other methods can guarantee
convergence to the optimal policy, this approach cannot.

We decided to try the method that showed state of the art performance on the most
interesting problems first. Later we realised that a policy search method would proba-
bly yield better results as the environment we are dealing with has a continuous action
space. It was however too late to change the focus of this project at the time of realisa-
tion. Thus, we recommend trying this approach if one decides to further this work.

The concept behind this approach is to define a set of parameters, θ, that we use to
parameterise the policy function. It would then be of the form:

πθ(s, a) = P(a|s, θ), (3.5)

and as such, is now a probability distribution over possible actions. We can choose
to model this in a number of different ways that will be explained in depth in later
chapters, but to give one example, it is possible to use a neural network. In this case
θ represents the weights of the network. We would then treat this as an optimisation
problem and try find the θ that would result in the optimal policy that best completes
the task at hand (Intro to reinforcement learning).

From this chapter we learnt what RL is and the common approaches used in this
field: model (“how does my environment change when I do this?”), value (“how good
is this state?”) based and policy (“what is the best action?”) search methods.
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4 Q Learning

In this chapter we will explore a value-based approach technique called Q learning.
This concept is very important as it is the predecessor to deep Q learning, the approach
we used for this project. First we will give a brief summary of value-based methods, in-
troduce the concept of temporal difference learning, action-value functions and finally
we will use those concepts to define Q learning.

We get an in depth understanding of what Q learning is and how it differs from the
regular value-based approach as well as what Q learning’s strengths and weaknesses
are.

In the previous chapter we defined the following value function:

V(s) := R(s, a) + γ ·∑
s′
(T(s, a, s′) ·V(s′)), (4.1)

where V(s), R(s, a) and T(s, a, s′) are our value, reward and transition functions, re-
spectively. As previously noted, in this definition we are still dependent on an internal
model of our environment. Ideally, we would like to remove this dependency as this
would simply our agent. Luckily, our agent can interact with the actual environment
to draw experience samples from it. As our agent explores the environment it gathers
state, action, reward, new state data tuples, (s, a, r, s′). We can use this data to coax our
value function, not to predict state transitions, to take state transitions into account.

We do this by introducing the concept of temporal difference learning. We define
our recursive value function once more. This iteration contains a term we call the
temporal difference error. We think of the temporal difference error as the prediction
error between the current and previous iterations of our value function. We define the
value function update as follows:

V[i+1](s) := V[i](s) + α · (

A︷ ︸︸ ︷
r + γ ·V[i](s′)−V[i](s)︸ ︷︷ ︸

B

), (4.2)
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where A is termed the learnt value, B is the temporal difference error, r is the imme-
diate reward, γ is the discount factor and α is the learning rate and the superscript in
square brackets, [i], is the number of the iteration (Intro to reinforcement learning). We
see that if the temporal difference error is zero, we do not update our value function.
This happens when the value function has converged to the optimal solution. From
this reasoning, we see that the learnt value is exactly what we are trying to predict:

r + γ ·V[i](s′)−V[i](s) = 0⇒ r + γ ·V[i](s′) = V[i](s).

Notice that this value function does not take a very important piece of information
into account, our agent’s actions. To utilise this information we define the action-value
function, Q:

Q[i+1](st, at) := Q[i](st, at) + α · (rt + γ ·Q[i](st+1, at+1)−Q[i](st, at)). (4.3)

As the name suggests, this function assigns value to pairs of states and actions. In
practise, we see that it is easier to extract the policy from the Q function than it is from
the previous value function. It is important to note that we not only need the action
the agent performed in this time step, at, we also need the action the agent wishes to
perform in the next time step, at+1. The agent selects both of these actions by using
its current policy, thus, this an on-policy approach. This is apposed to an off-policy
approach, where actions need not be selected according to the current policy of the
agent (Intro to reinforcement learning).

The advantage of an on-policy approach is the fact that the agent learns a value
function that takes future actions into account. The disadvantage is that your agent
can only learn from data that corresponds to it’s current policy. This does not make for
very efficient learning. For this reason, we favour an off-policy approach, such as Q
learning.

Using an off-policy approach means that we can collect data to train on while our
agent explores the environment. This also implies that we do not need direct access to
the environment. Our agent simply needs observations from the environment to learn.
In order for this to be an off-policy approach, the Q function update must change to
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the following:

Q[i+1](st, at) := Q[i](st, at) + α · (rt + γ ·max
a

Q[i](st+1, a)︸ ︷︷ ︸
A

−Q[i](st, at)). (4.4)

Instead of choosing an action using our current policy, we chose the action that would
lead us to the next most valuable state that our model is currently aware of, A. Note
that this action does not need to be the next performed action (Intro to reinforcement
learning).

We cannot train our agent yet as, until now, we have thought of the process of
updating the Q function as infinite. Realistically there must be an end. Since our Q
function is defined recursively, it does not account for this. As our Q function stands, it
has no way of assigning any values to any states because we have no way of assigning
a value to the last state. Thus, we make another change to the Q function:

Q[i+1](st, at) :=

rt A

Q[i](st, at) + α · (rt + γ ·maxa Q[i](st+1, a)−Q[i](st, at)) else
,

where A is the condition: “if episode terminates at state st+1” (Mnih et al., 2015). An
episode is a series of transitions beginning in the initial state and ending in the termi-
nating state.

We can now formulate an implementation of Q learning. The following is a typical
implementation of Q learning:
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Algorithm 1 Q Learning

1 Q = i n i t i a l i s e _ Q ( )
2 num_episodes = get_number_of_training_episodes ( )
3 gamma = get_gamma ( )
4 f o r episode in num_episodes :
5 environment = i n i t i a l i s e _ e n v i r o n m e n t ( )
6 while environment . episode_in_progress ( ) :
7 s t a t e = environment . g e t _ s t a t e ( )
8 a c t i o n = Q. choose_act ion ( s t a t e )
9 environment . update ( a c t i o n )

10 new_state , reward = environment . observe ( )
11 i s _ t e r m i n a t i n g _ s t a t e = environment . i s _ t e r m i n a t i n g _ s t a t e ( new_state )
12 Q. update ( s t a t e , ac t ion , reward , new_state , i s _ t e r m i n a t i n g _ s t a t e ,

gamma)
13 decay_epsi lon ( )

In this sense, Q’s underlying structure is very often a matrix with the same number
of rows as there are states and the same number of columns as there are actions that
can be performed. Thus, the Q update (line 12 of Algorithm 1) pseudocode could be
the following:

Algorithm 2 Q Update

1 def update ( s t a t e , ac t ion , reward , new_state , i s _ t e r m i n a t i n g _ s t a t e , gamma) :
2 new_value = 0
3 i f i s _ t e r m i n a t i n g _ s t a t e :
4 new_value = reward
5 e l s e :
6 b e s t _ a c t i o n = argmax (Q[ new_state ] )
7 v a l u e _ o f _ n e x t _ s t a t e = Q[ new_state , b e s t _ a c t i o n ]
8 new_value = Q[ s t a t e , a c t i o n ] + alpha ∗ ( reward + gamma ∗

v a l u e _ o f _ n e x t _ s t a t e − Q[ s t a t e , a c t i o n ] )
9

10 Q[ s t a t e , a c t i o n ] = new_value

With this structure, we can also allow for ε-greedy decision making. We add sup-
port for this in the choose action function (line 8 in Algorithm 1):
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Algorithm 3 ε-greedy Action Selection

1 def choose_act ion ( s t a t e ) :
2 eps i lone = g e t _ e p s i l o n ( )
3 a c t i o n = None
4

5 i f random ( ) < eps i lon :
6 a c t i o n = get_random_action ( )
7 e l s e :
8 a c t i o n = argmax (Q. p r e d i c t ( s t a t e ) )
9

10 re turn a c t i o n

We see that this easily implementable. This implementation works well for a large
variety of domains. However, the matrix required to store the values for Q, grows
very quickly as the state and action spaces increase in size. The set of available state
configurations is termed the state space and the set of actions that can be performed
in the environment is termed the action space. As the Q matrix increases in size, we
need to train our agent for longer. Long enough for values to propagate through the Q
matrix and stabilise.

Unfortunately, this implementation does not allow the agent to generalise well. If
the agent encounters a state it had not seen in training, it will not be able to select a
reasonable action. This problem, coupled with the issues surrounding high dimen-
sional state and action spaces, lead us to use more advanced reinforcement learning
techniques in this project. In the next chapter we discuss how we use function approx-
imation to address these problems.

We have leant what Q learning is, how it differs from other value-based approaches
and what the steps in a Q learning algorithm are. We have also seen what Q learning’s
strengths and weaknesses are. We are well suited to understand the following chap-
ters.
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5 Function Approximation

In the previous chapter we saw that the more traditional ways of representing func-
tions in reinforcement learning (RL) has some fairly large flaws: they do not scale well
and they do not generalise well. This is in part due to the fact that we have been try-
ing to iterate to the exact function but this is not always necessary. In this chapter we
will introduce the concept of approximating these functions in two ways. First, by us-
ing a linear combination of basis functions (termed linear function approximation) and
then, by using neural networks. After this chapter we will understand all concepts that
make up deep Q learning.

We will gain an intuitive understanding of how to approximate functions with a
linear function approximation and an in depth understanding of how to approximate
functions using neural networks. We will acquire an intuition for when we should use
each of these techniques and an understanding of the weaknesses of each.

We have discussed many functions throughout this project report, such as value
and policy functions. It is potentially impossible to solve for these functions’ closed
form solution. Thus, we need a way of approximating these functions. The most basic
approach would be to choose a set of linear basis functions (such as Taylor or Fourier
series) with which you will construct an approximation. The most popular method in
the RL field at the moment is to use neural networks. Before we discuss what neu-
ral networks are and how we use them to approximate functions, lets discuss linear
function approximation.

5.0.1 Linear Function Approximation

There are two techniques that fall under this category that we are quite familiar with:
Fourier series and Taylor series expansion. The idea being: we define a set of basis
functions, each with a corresponding coefficient, we multiply each basis function with
its given coefficient and we sum all of them together to form an approximation of our
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desired function. It can be expressed mathematically by the following:

f (x) ≈ f̂ (x, θ)

f̂ (x, θ) =
n−1

∑
k=0

wk · qk(x), (5.1)

where x is the input, f (x) is the function we want to approximate, f̂ (x, θ) is the ap-
proximation of f (x), θ is the set of coefficients (or weights), n is the number of basis
functions, wk and qk are the corresponding coefficient (or weight) and basis function,
respectively (Konidaris, Osentoski, and Thomas, 2011). In this case our input is a scalar
and our basis functions take scalar inputs and produce scalar outputs. If we allow our
input to be a vector but constrain our basis functions to accept and produce scalar
inputs and outputs, respectively, we get the following equation:

f̂ (x, θ) =
n−1

∑
k=0

d−1

∑
j=0

wk,j · qk(xj), (5.2)

where d is the dimensionality of the input and wk,j is the weight that corresponds to
the kth basis function and the jth input vector entry.

Recall from the previous chapter that our Q function is defined as follows:

Q[i+1](st, at) := Q[i](st, at) + α · (rt + γ ·max
a

Q[i](st+1, a)−Q[i](st, at)). (5.3)

Using linear function approximation we can approximate our Q function as follows:

Q[i](st, at) ≈ Q̂(st, at, θ[i])

Q̂(st, at, θ[i]) := Q̂(st, at, θ[i]) + α · (rt + γ ·max
a

Q̂(st+1, a, θ[i])− Q̂(st, at, θ[i])), (5.4)

where Q̂ is of the form:

Q̂(st, at, θ[i]) =
n−1

∑
k=0

(
d−1

∑
j=0

(w[i]
sk,j · qk(stj)) + w[i]

ak · qk(at)), (5.5)

stj is the jth item in the state vector, wsk,j is the weight corresponding to the kth basis
function and the jth item in the state vector and wak is the weight corresponding to the
kth basis function and the action, at. Note that the iteration superscript has moved to
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the weights, this is to show that the weights change every iteration of the update.
We can see that the inclusion of the temporal difference error makes this equation

cluttered and lengthy. Luckily, we have a solution. Now that we have a parameterised
approximation function, we can define a loss function for our model. Recall that a loss
function is, put briefly, a function that tells us how good our current weights are at
approximating the original function, given the data we have. The smaller the value of
our loss function, the better our approximation is. We can define our loss function in
the following way such that it takes our temporal difference error into account:

L(θ[i]) = Est,at,rt,st+1{(rt + γ ·max
a

Q̂(st+1, a, θ[i])− Q̂(st, at, θ[i]))2} (5.6)

where L is the loss function (Mnih et al., 2015). We note that this is actually the mean
squared error (or mean squared temporal difference error) loss function. This simpli-
fies our approximate Q function to the following:

Q̂(st, at, θ[i+1]) := rt + γ ·max
a

Q̂(st+1, a, θ[i]). (5.7)

The strength and weakness of linear function approximation lies both in its simplic-
ity. The strength of this technique is that the derivative, with respect to the weights, of
the loss function is convex and, thus, contains one easily obtainable (global) optimum.
In a large portion of cases we can solve for the optimal set of weights directly by taking
the derivative, with respect to the weights, of the approximated function and setting it
equal to zero. In cases where we cannot do this, we can use an iterative method, such
as gradient decent, to find the global optimum.

The weakness of this approach is that in many cases the number of basis func-
tions needed for good approximations grows exponentially. If our input is d dimen-
sional, the number of basis functions for a full pth order Fourier approximation is
n = 2(p + 1)d (Konidaris, Osentoski, and Thomas, 2011, p. 3). Since the number of
weights required for this approximation is nd = 2d(p+ 1)d, we see the memory needed
to store the weights for high dimensional problems is too large to be practical. Not only
that, the computational power needed to find the optimum may also be impractical.

Aside from this, many interesting problems require us to approximate nonlinear
functions. This approach only allows for approximation of nonlinear functions if the
set of basis functions contains nonlinear functions. Even so, this approximation method
does not allow the modelling of nonlinear relationships between the basis functions.
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As the problem this project report is addressing is high dimensional, we do not
make use of this approximation method. Thus, we move onto another function ap-
proximation method that has shown excellent results when dealing with high dimen-
sional problems.

5.0.2 Neural Network

Note: we have omitted the biases in this explanation to aid in clarity, brevity and to
allow easier comparison between neural networks and linear function approximation.

A neural network is given its name as it is modelled in a similar fashion to our
understanding of how the brain is structured. It is made up of a series of neurons
connected by synapses. We represent this as a mathematical graph where the neurons
are the nodes and the synapses are the directed edges. Computations take place in the
nodes and data flows along the edges.

Neurons take each input and multiplies it with a corresponding coefficient, termed
a weight. The result of all the multiplications are then summed and a function (usually
nonlinear), termed the activation function, is applied to the result. The output of the
activation function is the output of neuron and is passed, along the connected edges, as
input to the next neuron. The mathematics of the events in the neuron are as follows:

z = f (
d−1

∑
k=0

wk · xk) = f (w · x), (5.8)

where z is the output of the neuron, f is the activation function, x is the input vector
with dimensionality d, xk and wk are the kth entry in the input and the corresponding
weight, respectively and w is the vector of weights for this neuron (Lippmann, 1987).
Figure 5.1 shows this graphically.
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FIGURE 5.1: A neuron showing the inputs x0, x1 and x2 being multiplied
by w0, w1 and w2, respectively. This is them summed and passed to the
activation function, the ReLU function in this case. The output of the acti-

vation function is then passed on as the output of the neuron, o.

As previously stated, a neural network is made up of many neurons connected to-
gether. These neurons are connected in layers, as it is termed. The first layer, termed
input layer, is where the data is fed into the network. The input layer is slightly differ-
ent to the other layers as each neuron has only one input and no computation occurs
within the input layers neurons. The input layer simply passes the input it receives on
to every neuron in the next layer. Thus, there are the same number of neurons in the
input layer as there are elements in your input.

The mathematics of the function applied by a layer can be expressed in the follow-
ing manner:

z = Wx ← zj =
d−1

∑
k=0

wj,k · xk = wj · x (5.9)

h← hj = f (zj), (5.10)

where z is the output vector of this layer, W is the matrix containing all weights for
this layer, x is the input vector to this layer (which is technically also the input to each
neuron), zj is the jth entry in z, wj,k is the kth entry in the weight vector for neuron j and
wj is the weight vector for neuron j (Ramchoun et al., 2016). The process of applying
an input and propagating the information through the neural network to receive an
output is termed a forward pass.
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Typically, every neuron in a given layer is connected to both every neuron in the
previous layer (directed edge for data coming into this neuron) and every neuron in
the next layer (directed edge for data leaving this neuron). However, the last layer of
the network, termed the output layer, is slightly different as there is no next layer to
pass data to. The output of each neuron in the output layer forms an element in your
output.

Thus, if we have input data x ∈ Rn and we want our network to predict output
data y ∈ Rm, our neural network must have n and m neurons in the input and output
layers, respectively. The layers in between are termed the hidden layers. There can
be any number of hidden layers and they can contain any number of neurons. The
structure of the neural network is termed the architecture. Figure 5.2 shows a graphical
representation of a small neural network.

FIGURE 5.2: A neural network with an input layer that consists of three
neurons, an output layer consisting of two neurons and no hidden layers.
As discussed later in this project report, typical input and output for our

use case is the state encoding and action-value pairs, respectively.

As such, neural networks are a way of modelling a function that maps from some
input vector to some output vector. This can be adapted to work on tensors of arbitrary
shape but that is outside the scope of this project report. This is represented mathe-
matically by the following equation: y = NN(x, θ), where NN and θ are the function
that the neural network applies and the collective weights of all neurons (termed the
weights of the neural network) respectively.

For example, we can represent a three layer neural network (by this we mean a
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neural network with one input layer, one hidden layer and one output layer) mathe-
matically as follows:

y = NN(x, θ) = f (W2 f (W1x))

= f (W2 f (z1))

= f (W2h1)

= f (z2)

= h2,

where x is the input to the neural network (or the input to the input layer), W2 is the
weight matrix for the output layer, f is the activation function, W1 is the weight matrix
for the hidden layer, h1 is the output of the hidden layer and h2 is the output of the
neural network (or the output of the output layer). Note that in this case f takes in a
vector and applies the activation function to every entry in the vector and outputs a
vector of exactly the same dimensionality.

It can be shown that given enough layers, with enough neurons, and enough train-
ing data a neural network can approximate any function to arbitrarily high precision
for a specific section of its domain (Hornik, Stinchcombe, and White, 1989). Thus, they
should clearly be considered when we want to approximate a function. Naturally, for
each application we must assess when enough is enough. This is not always easy.

In practice, we see that we can approximate interesting functions very well with rel-
atively few weights. Thus, this approach has been favoured over using linear function
approximation. In fact, this approach is quite similar to using linear function approx-
imation when considering one neuron. Each neuron outputs the weighted sum of it’s
inputs passed through an activation function. Thus, we could make the inputs to the
neuron a set of basis functions and set the activation function to be f (x) = x (known
as the linear activation function) and we would have an identical setup. However, we
have layers of neurons, meaning that the output of the previous layer forms the new
basis functions to be the input of the current layer. This, coupled with nonlinear ac-
tivation functions is where the true strength of the neural network lies. Essentially, a
neural network tunes its basis functions such that they best approximate the desired
function. The neural network is also able to tune these basis functions to be nonlinear.
That is why neural networks are so powerful. Note: neural networks can only model
nonlinear functions if the activation function is nonlinear.
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In the next chapter we will see how we can approximate the Q function using this
technique. To do this we will have a look at how the network is trained and the loss
function associated with this. First, we will briefly discuss the weakness of this ap-
proach.

The weakness of this technique is the fact that the derivative of the loss function,
with respect to the weights of the network, is not convex and, thus, cannot be directly
solved for. In truth, even if the derivative of the loss function is convex, it cannot
always be solved for. Moreover, there is no guarantee that the global optimum will be
found when using iterative methods to find the weights. When using this approach
we often have to accept a local minimum that is good enough for our application.

We have learnt what what function approximation is and why we would want to
use it. We have gained an intuitive understanding of linear function approximation
and an in depth understanding of how to use neural networks to approximate a given
function. We have also acquired some insight into when each of these methods would
be used. Briefly, if your input data is low dimensional, linear function approximation
and use neural networks otherwise.
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6 Deep Q Learning

In this chapter we use all of the previously discussed concepts to build our under-
standing of deep Q learning, the model this project made use of. We will first discuss
what deep Q learning is by linking it to concepts we have already discussed, such as
value functions, Q learning and function approximation using neural networks. We
will then explain the mathematics for this approach. Finally, we discuss why we used
this technique in this project and if it was the best choice to do so.

We gain an understanding of deep Q learning by connecting it to previously dis-
cussed concepts. We gain insight into how the process works mathematically. We see
what optimisations have been made to deep Q learning and we acquire intuition into
when deep Q learning should be used.

Simply, deep Q learning is the technique whereby a deep neural network is used to
approximate the action-value function, in the Q learning technique.

In previous chapters we saw that the aim of the value-based approach is to assign
a value to a given state (environment configuration) and the policy is inferred from
these values. We then introduced action-value functions whereby we took the agent’s
actions into account when evaluating states. We defined the temporal difference error
and used it to remove our dependancy on the state transition function. Finally, we
introduced Q learning as an off-policy approach so that we could learn from any valid
data.

We saw that traditional Q learning approaches do not perform well in high dimen-
sional state or action spaces and do not generalise well. Thus, we discussed how we
can overcome these problems by using function approximation. We now show the
process of using a neural network to approximate the Q function.

We can use the loss function, L, and the definition of the approximated Q function,
Q̂, from the previous chapter:

L(θ[i]) = Est,at,rt,st+1{(rt + γ ·max
a

Q̂(st+1, a, θ[i])− Q̂(st, at, θ[i]))2}, (6.1)
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Q̂(st, at, θ[i+1]) := rt + γ ·max
a

Q̂(st+1, a, θ[i]), (6.2)

where s, a, r, θ and γ are our state, action, neural network weights and discount fac-
tor, respectively. Note that the function is solved iteratively, thus, the [i + 1] and [i]
superscripts distinguish between iterations.

The difference between using neural networks and linear function approximation
is the form of Q̂. When we use neural networks to approximate our Q function, it takes
the following form:

Q̂(st, at, θ[i]) = NN(st, at, θ[i]), (6.3)

where NN represents the function that the neural network applies. We have now de-
fined everything we need to learn how to train our agent. However, we can make an
optimisation that will make this approach more effective.

Q learning (and deep Q learning) is used to learn policies in what we call discrete,
abstract action spaces. By this we mean that we label some action that can be taken in
the environment as action 0, the next as action 1 and so on. Action 0 may represent
any action, such as taking a step forward, the same goes for all actions. This is useful
as we can then store the action-value pairs in a vector, y, in a way where the index of
the vector corresponds to the action taken. For instance: y0 would be the value associ-
ated with taking action 0 in the current state. This allows us to make an optimisation.
We change the structure of our neural network to take only the state as input and to
predict the action-value pairs for all actions (Mnih et al., 2015). This is achieved my
having n neurons in the input layer, where n is the dimensionality of the state vector,
and m neurons in the output layer of the of the neural network, where m is the di-
mensionality of our action space (the number of available actions). When an update is
to be made, we feed the current state into the neural network and receive a vector of
action-value pairs, the previously mentioned y. We then only update the value with
the corresponding action index:

yat := rt + γ ·max
a

y′, (6.4)

or, more explicitly:

NN(st, θ[i+1])at := rt + γ ·max
a

NN(st+1, θ[i]). (6.5)

A small example can make this process very clear. Imagine the environment gives
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state encoding st to our agent. Our agent only has two actions it can perform (action 0
and action 1) and picks at = 1. The agent gives at to the environment and the environ-
ment then responds with st+1 and rt = 0.75. Let us say we defined α = 1 and γ = 0.9
before we started training. We then feed st into our neural network and receive action-
value vector y = [ 0.7 0.1 ]. We do the same with st+1 to obtain y′ = [ 0.4 0.6 ]. We
can now substitute values into the above equations:

yat := rt + γ ·max
a

y′

y1 := rt + γ ·max
a

[ 0.4 0.6 ]

:= 0.75 + 0.9 · 0.6

:= 1.29

∴ y := [ 0.7 1.29 ].

We then train our neural network weights so that:

NN(st, θ[i+1]) := y := [ 0.7 1.29 ].

This structure greatly improves performance when assessing what action to take
as we need only do one forward pass of the neural network to obtain all action-value
pairs. Previously we would have needed to do a forward pass for each action and if
we have a large action space and a large neural network this becomes very computa-
tionally expensive.

Remember the adaption made to the Q function for the final state in the episode:

Q̂(st, at, θ[i+1]) :=

rt A

rt + γ ·maxa Q̂(st, at, θ[i]) else
,

where A is the condition: “if episode terminates at state st+1” (Mnih et al., 2015).
We finally know all we need to know to train our neural network and set up a

deep Q learning agent. As with linear function approximation, we have defined a loss
function for our current approximation. We take the derivative of this loss function
and use a technique called gradient decent to adjust the weights of our neural network
to better approximate our Q function. The full nature of gradient decent is outside of
the scope of this project report. Simply, gradient decent is a technique whereby we
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inspect the gradient of our loss function and change our network weights such that
they follow the gradient towards a point where the loss function has a lower value.
Thus, our approximation becomes better.

Now that we know the mathematics behind this approach, let us have a look at how
it would be implemented. The following is pseudocode for a typical implementation
of deep Q learning:

Algorithm 4 Deep Q Learning

1 Q = i n i t i a l i s e _ n e u r a l _ n e t w o r k ( )
2 num_episodes = get_number_of_training_episodes ( )
3 gamma = get_gamma ( )
4 f o r episode in num_episodes :
5 environment = i n i t i a l i s e _ e n v i r o n m e n t ( )
6 while environment . episode_in_progress ( ) :
7 s t a t e = environment . g e t _ s t a t e ( )
8 a c t i o n = Q. choose_act ion ( s t a t e )
9 environment . update ( a c t i o n )

10 new_state , reward = environment . observe ( )
11 i s _ t e r m i n a t i n g _ s t a t e = environment . i s _ t e r m i n a t i n g _ s t a t e ( new_state )
12 Q. update ( s t a t e , ac t ion , reward , new_state , i s _ t e r m i n a t i n g _ s t a t e ,

gamma)
13 decay_epsi lon ( )

As we can see, the process remains largely the same. The real difference is apparent
in how we update the Q function:
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Algorithm 5 Deep Q Update

1 def update ( s t a t e , ac t ion , reward , new_state , i s _ t e r m i n a t i n g _ s t a t e , gamma) :
2 a c t i o n_ v a l u e _ v e c to r = Q. p r e d i c t ( new_state )
3 new_action_value_vector = Q. p r e d i c t ( s t a t e )
4

5 i f i s _ t e r m i n a t i n g _ s t a t e :
6 new_value = reward
7 e l s e :
8 v a l u e _ o f _ n e x t _ s t a t e = max( a c t i on _ v a l u e _ v e c t o r )
9 new_value = reward + gamma ∗ v a l u e _ o f _ n e x t _ s t a t e

10

11 new_action_value_vector [ a c t i o n ] = new_value
12 Q. update_with_gradient_decent ( s t a t e , new_act ion_value_vector )

We can see that there are clear benefits to deep Q learning. This approach offers a
way to approximate functions very well with a relatively small number of weights. It
allows your approximated Q function to generalise, give plausible results for unseen
states, better than that of regular Q learning. This approach has also been used, very
successfully, on some of the most interesting problems to date. Thus, we thought it the
best approach for our project.

Unfortunately, as previously stated, Q and deep Q learning are designed to be ap-
plied to discrete action spaces. The problem we chose to address in this project has a
continuous action space and is, thus, not a typical use case for deep Q learning. We
discuss why we stayed with this approach and how we worked around this problem
in Chapter 11. We now realise that policy search methods would most likely have been
a better approach. This is also discussed in Chapter 11.

We have learnt that deep Q learning is a value-based approach whereby we approx-
imate the Q function using a neural network. We have had a look at the mathematical
process of this approach. We have seen that it is suited to problems with high di-
mensional, discrete, abstract action spaces and is not particularly suited to continuous
action spaces. We noted that the problem addressed by this project has a continuous
action space. The fact that deep Q learning is not suited to continuous action spaces is
addressed and solution to this problem is developed in later chapters.
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7 Problem Description

In this chapter we will describe the environment in which we placed our agent. It is
important to understand how the environment works when wanting to understand
how the agent is to learn to react to it. First we will learn what types of entities the
environment is populated with. Then we will learn how a score is allocated. Finally
we will learn what the conditions are to win or lose the game.

We gain a full understanding of the environment we have created our agent to
interact with. We will discover what entities the environment is made up of, how a
score is allocated and how the conditions are to end a episode.

The environment was first described on the website CodinGame.com. This is a
website where programers can solve algorithmic problems, program bots to play var-
ious games (some of which compete against other bots) and get in touch with other
programmers on the platform.

7.0.1 Code vs Zombies

This environment is called Code vs Zombies (CvZ). The game consists of three differ-
ent types of entities, namely, a shooter, humans and zombies. Humans are stationary
entities. The Shooter is a human that can move a certain distance each round and will
automatically kill zombies that are near enough to it. Zombies are entities that contin-
uously move towards the closest human (remember that the shooter is also a human)
and kill any human that is close enough to it. The shooter can move a greater dis-
tance than zombies can per round. Figure 7.1 shows a graphical representation of the
environment.
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FIGURE 7.1: Graphical representation of the Code vs Zombies environ-
ment. If a human (blue circle) enters the zombie’s circle (red), it is killed.

If a zombie enters the shooter’s circle (orange), it is killed.

The agent plays the game by giving the environment the co-ordinates to which the
shooter should move towards. The objective of the game is to maximise the game
score. The game score is the sum of the score for each round (the round score). The
calculation for the round score is shown below. In the equation pi is the score for round
i, hi is the number of humans alive in round i, zi is the number of zombies the shooter
has killed in round i and Fibonacci(x) is the xth number in the Fibonacci sequence. The
score is given by:

pi(hi, zi) = 10 · h2
i ·

zi

∑
x=1

Fibonacci(2 + x). (7.1)

It is clear from 7.1 that the best score is achieved if all zombies are killed in a single
round and all humans are alive in this round. If at any point there are no longer any
living humans, the game score becomes zero and the environment tells the agent it has
lost the game. The environment tells the agent it has won the game when all zombies
are dead. The objective is simple: maximise the game score.

In this chapter we learnt how the environment our agent interacts with works.
What type of entities populate the environment, how the environment allocates a score
to a game and what the winning and losing conditions are.
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8 Environment Setup

This chapter describes the information that is passed between the agent and the en-
vironment, specifically the form of the state, the reward and the action. The way this
information is structured is very important. It has a very large impact on how the agent
must be structured and how effective the agent can be. We will first form a general idea
of how the environment is represented. Then we will go into detail on how the state,
reward and action values are structured.

We fully explain how the information passed between the environment and the
agent looks and why it has been chosen to take this form.

8.0.1 Code vs Zombies

This environment consists of a two dimensional grid with height and width of 9000
and 16000 units respectively. All entities must have integer co-ordinate values within
these ranges. The top left corner is co-ordinate (0, 0) and the bottom right corner is
co-ordinate (15999, 8999).

It is common practise, and has been shown to significantly improve solution stabil-
ity, to normalise inputs to machine learning models. This is the reason for normalised
values being used for the state and the reward.

State

The environment may have at most 99 humans and 99 zombies. Thus, the state is rep-
resented as a vector of length 398. The first two entries of this vector are the normalised
x and y co-ordinate values of the shooter, respectively. The next 198 entries are the nor-
malised x and y co-ordinate value pairs of the humans. The last 198 entries are the
normalised x and y co-ordinate value pairs of the zombies. We see where the size of
the state vector comes from: 398 = 2 + 2 · 99 + 2 · 99, where the first term is the two
values for the shooter’s co-ordinates, the next term is the 198 values for the humans’
co-ordinates and the last term is the 198 values for the zombies’ co-ordinates.
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This leaves us with a state vector that can represent states that consist of the maxi-
mum number of entities but we encounter a problem if there are less entities (such as
when the shooter kills a zombie or when a zombie kills a human). This problem, and
our solution for it, is explained in depth in Chapter 10. Briefly, we made an intelligent
decision as to set all co-ordinate values of deceased (or non-existent) entities to -1.

An example of a state encoding that consists of one shooter in the top left corner, one
human in the centre of the environment and one zombie at co-ordinate (8999, 8000) is as
follows: [0, 0, 0.5, 0.5,−1,−1, ..., 1, 0.5,−1,−1, ...,−1]. Note: the zombie’s y co-ordinate
has been rounded to the first decimal place, this does not happen in practise.

Reward

As discussed previously, creating a reward function is very important. It is enormously
difficult to structure rewards in a way that will produce exactly the response you ex-
pect, or want, from the agent. We have structured our reward value as follows. The
reward for round i, the score achieved for round i and the maximum score that could
have been achieved for this game are represented by ri, pi and pmax, respectively, in
the following equation: ri = pi/pmax. Remember the equation for the score for a given
round:

pi(h, z) = 10 · h2 ·
z

∑
x=1

Fibonacci(2 + x), (8.1)

where h and z are the number of humans currently alive and the number of zombies
killed in the last state transition, respectively. This is done with the intention of giving
the agent a way to determine which actions are better than others when both give a
reward, while still keeping values normalised as mentioned above.

Penalty

We call negative reward values penalties. The purpose of penalties is to teach the
agent what undesirable outcomes are. We use penalties in two ways: to convey to the
agent that humans dying is undesirable and that the agent should try end the game
sooner rather than later. From the way the game is scored it is obvious to see why
we would prevent humans dying. The more live humans, the greater the score. The
second penalty is something that is typically done to shorten simulation times and to
find the shortest sequence of tasks to complete the goal. In this case it is beneficial
to shorten simulation time but the shortest sequence of tasks to complete the goal is
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not necessarily the optimal one. However, in practice with this environment, better
policies are usually discovered when this penalty is in place. We speculate that the
reason for this is the shooter realises that the game is ended sooner if it actively seeks
out and kills zombies, instead of defending humans. This often leads to more humans
being saved and, thus, higher scores.

The penalty for humans dying has been linked to their value. We have defined hu-
man value to be the following: v(h, z, n) = p(h, z)− p(h− n, z), where p, h, z and n are
the round score function, how many humans and zombies are currently alive and the
number of humans in the group of which the worth is to be calculated, respectively.
As such, the value of a human is the difference between the score achieved if all zom-
bies were killed in this round with the current number of humans, and with one less
human. The penalty is then the value divided by −pmax: −v(h, z, n)/pmax, this is done
to ensure the penalty is also a value between zero and one. This penalty is given for all
human deaths except the final one. When the last human dies, the game is ended and
the shooter has lost. Thus, this death has the maximum penalty of -1 attached to it.

The second penalty is applied in every round where the reward would be zero
otherwise. It is 20% of the current human death penalty. This is to ensure that should
the shooter have the option of saving a human and doing another action, it is still
incentivised to save the human. If this penalty is bigger than that of a human dying,
there would be no incentive to save the human.

Thus, the complete reward function looks as follows:

ri(h, z, n) =



p(h,z)
pmax

z > 0, n = 0
v(h,z,n)

pmax
n > 0, h 6= 0

−1 h = 0

0.2 · v(h,z,1)
pmax

else

,

where n is the number of humans that were killed in the last state transition.

Action

The environment expects a vector of length 2 from the agent. The action is the unnor-
malised x and y co-ordinate values the shooter should move towards.

We have learnt what the form the information that is to be passed between our
agent and environment and why it has been chosen to be so. We have seen that the
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state is a fixed length vector containing the normalised co-ordinates of entities, the
reasons for this decision were briefly discussed and will be discussed on more depth
in future chapters. We learnt that the action the agent must pass to the environment
is a vector containing the unnormalised co-ordinates that the shooter should move
towards. Finally, we saw that the reward that the environment passes to the agent is a
scalar value between -1 and 1.
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9 Software Engineering

Until now we have been focused on the theory of what we did for this project, now
we shift focus to how we developed this project. We outline the programs we created
for this project and state which core application program interfaces (APIs) were used.
As with any project that includes programming, we needed to be very methodical in
our planning and execution. This chapter briefly outlines the software engineering
practises we followed in the process of programming this project. We first outline
the development method we used, then the version control system, the unit testing
procedure and finally dynamic programming and type checking methods.

We go through the basic structure of the code we developed and explain why we
used certain tools and APIs. We get a basic idea of the common software engineering
practices such as agile development, unit testing, version control, dynamic program-
ming and type checking and why they have been used.

9.0.1 The Program

The practical aspect of this project consisted of programming a reinforcement learning
agent. Figure 9.1 shows an abbreviated universal modelling language (UML) class di-
agram for the core of our project. We developed an environment for the Code vs Zom-
bies problem, a deep Q learning agent and an interface that bridges these two. As such,
one could present our interface with any environment and agent (provided they follow
a similar structure) and our interface will facilitate communication between them.
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FIGURE 9.1: Abbreviated UML of the core code we developed and how it
links to the most important API, Keras. It shows the inheritance structure
that is present in the environment setup and the association structure that

links the environment and the agent through the Interface class.

The development of all the resources necessary in the development of our program
could take a life time. Thus, we used a number of APIs that provided a platform for
us to concentrate on the reinforcement learning task. The Keras API is used to facil-
itate the creation and training of our Q network. The Keras API uses the Tensorflow
API as a backend. Tensorflow is a highly optimised machine learning API that auto-
matically parallelises user code. Numpy is a numerical computation API that allows
us to perform complicated mathematical operations easily and quickly and was used
extensively. A link to our full code can be found in Appendix C.

9.0.2 Development Method

Agile Development

Throughout this project we followed a development method known as agile develop-
ment. Agile development is a set op principles and practices that allow software teams
to develop quickly and respond to change (Martin and Martin, 2006). A good example
of an agile programming methodology is test driven development.
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Test Driven Development

We used test driven development for a large portion of this project. Test driven devel-
opment is when one writes tests for a piece of code to pass before the piece of code is
written (Astels, 2003). One then writes the code such that it passes all the tests. This
helped us develop more quickly, as we had a clear goal of what our code needed to
achieve. This approach also kept the quality of our code high as it needed to follow
specifications set by the tests. For example, we wrote the unit tests, discussed in the
next section, before we wrote the code they are meant to test.

9.0.3 Unit testing

Unit testing is a method by which small blocks (or units) of code tested by running
multiple tests where input is fed to this block of code and the output is compared to
the output we expect (Sen, Marinov, and Agha, 2005). This unit is only considered
to be working if it produces the correct output for all tests. Unit testing also forms
part of the test driven development methodology. We wrote extensive unit tests for
our code to reduce the number of errors present in our code. This also allowed for
faster debugging and it ensured that future code changes do not lead to older code not
working as intended. We used the UnitTest Python library, an example of this follows:

Algorithm 6 Unit Test Example

1 def t e s t _ d i s t a n c e ( s e l f ) :
2 point_a = Coord ( x =1 , y=1)
3 point_b = Coord ( x =0 , y=1)
4 s e l f . a sser tEqua l ( 1 , point_a . d i s t a n c e ( point_b ) )

Note: point_a and point_b are co-ordinates, the distance function calculates the dis-
tance between the two points and the assertEqual function is a function in the UnitTest
library that raises an error if the two arguments are not equal.

9.0.4 Version Control

We used Git version control extensively throughout this project. “Version control is
a system that records changes to a file or set of files over time so that you can recall
specific versions later” (Chacon and Straub, 2014). Using Git enabled us to backup
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our code (and this report) and have easy access to it from any other internet connected
computers. Git also allowed us to try different programming approaches in a con-
tained environment.

9.0.5 Dynamic Programming

Dynamic programming is a core element of this project. Dynamic programming is
method of solving complex problems by breaking them into smaller problems and
storing the results of the smaller problems for future use (Bellman, 2013). A simple
example of dynamic programming in our code is the function that calculates the score
for the Code vs Zombies environment. The score involves calculating the Fibonacci
sequence, which is a classic introductory problem to dynamic programming. Instead
of recalculating the sequence every time we need one of the numbers:

Algorithm 7 Slow Fibonacci

1 def s low_f ibonacc i ( n ) :
2 previous_number = 0
3 current_number = 1
4

5 f o r i in range ( n−2) :
6 next_number = previous_number + current_number
7 previous_number = current_number
8 current_number = next_number
9

10 re turn current_number

We rather store what we have already calculated and carry on where we left of (if
we need to):
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Algorithm 8 Fast Fibonacci - Using Dynamic Programming

1 f i b o n a c c i _ s e q = [ 0 , 1 ]
2

3 def f a s t _ f i b o n a c c i ( n ) :
4 i f n <= len ( f i b o n a c c i _ s e q ) :
5 re turn f i b o n a c c i _ s e q [ n−1]
6

7 f o r i in range ( n − len ( f i b o n a c c i _ s e q ) ) :
8 f i b o n a c c i _ s e q . append ( f i b o n a c c i _ s e q [−1] + f i b o n a c c i _ s e q [−2])
9

10 re turn f i b o n a c c i _ s e q [−1]

This greatly improves simulation speeds as we do not waste time recalculating val-
ues. Note: there are corner cases that would lead the above functions not to work as
intended, for brevity and clarity we chose not to cater to those cases in this example.

9.0.6 Type Checking

The vast majority of the code we wrote was written in Python. Since python is a
dynamically-typed language (meaning that variable types are assigned at execution
time and can be changed), we must be careful to ensure that we know which types will
result in proper execution of our functions. We greatly reduced the number of errors in
our code by whitelisting certain types to be passed in our functions and raising errors
should a type be received that is not on the whitelist. A simple example of this follows:

Algorithm 9 Type Checking Example

1 def func ( x ) :
2 i f not i s i n s t a n c e ( x , ( in t , f l o a t ) ) :
3 r a i s e TypeError ( " x must be an i n t e g e r or a f l o a t " )

We went through the core of our program and the main software engineering prac-
tices what we used throughout the development of this project, namely: agile develop-
ment, unit testing, version control, dynamic programming and type checking. These
all reduced the number of errors present in our code, optimised our development pro-
cess and overall attributed to a better project.
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10 Implementation Issues

This chapter aims to outline the implementation difficulties that were encountered
throughout the development of this project and how they were overcome. This is es-
pecially important to do as it reinforces this information in our minds. This chapter
also serves as a record for others, should they meet the same difficulties. We will also
discuss any optimisations we made throughout the project but we leave the testing,
results and analysis thereof for the following chapter.

We will explain why deep Q learning is not suited to the problem described in
Chapters 7 and 8 and how we overcame this. We then discus complications that the
environment introduced and how overcame them. Finally, we will gain an understand-
ing of the optimisations that were made on the agent.

10.0.1 Challenges

Continuous Versus Discrete Action Spaces

The first, and perhaps, the largest issue we were faced with is the fact that we de-
cided to use deep Q learning for this project. We started our research on reinforcement
learning methods by identifying those currently used to solve the most interesting
problems. We quickly found deep Q learning and thought it a good approach. We
developed an understanding of it from reading various papers and implementing it
on simple environments. Our implementation performed well and we understood the
approach from the perspective of using it on this simple environment. However, the
problem this report sought to address and the simple environment had a very impor-
tant difference that we failed to detect. As previously discussed, deep Q learning is
designed for use on environments with discrete action spaces. The simple environ-
ment had a discrete action space and the Code vs Zombies problem has a continuous
action space.

We felt it was too late to change the problem and the approach, thus, we decided
to devise some solution. We decided that the easiest solution would be to discretise
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the action space that our agent sees. There are numerous ways one could do this.
One could have the agents actions defined as moving a fixed distance in one of the
cardinal directions (north, east, south or west). One could expand this to include the
inter-cardinal (north east, north west, etc.). One could take both of the previously
mentioned methods and double the set of actions by allowing for two fixed distances
the agent could choose to move in. The list of possibilities goes on.

We decided to define the agent’s actions as moving a set distance towards predeter-
mined and fixed points in the environment. For example: action 0 would be to move
a fixed distance towards the point (0, 0). Our first thought was to use the points (0,
4500), (8000, 0), (8000, 8999) and (15999, 4500), the points that would point in the car-
dinal directions if the agent is placed in the centre of the environment, (8000, 4500).
However, this setup makes it impossible for the agent to reach every point in the envi-
ronment. For instance, the corners, (0, 0), (0, 8999), (15999, 0) and (15999, 8999), cannot
be reached. To solve this problem, we select the corners to be our points to which the
agent will move towards. In Figure 10.1 we see two possible action sets: the cardinal
method and an extended version of the fixed point system described in this paragraph.

(A) Cardinal Direction Method (B) Fixed Point Method

FIGURE 10.1: Two of the possible action sets. Figure 10.1a shows the di-
rection of the possible actions for the cardinal method and Figure 10.1b

shows the direction of the possible actions for the fixed point method.

We feel that this method is better than the previously mentioned cardinal direction
method as it allows full exploration on the environment with only four actions and
in general allows for shorter paths between points in the environment. Furthermore,
by the way the environment is setup, is more computationally efficient to chose fixed
points to travel towards instead of calculating ones based on the agent’s current posi-
tion.
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This setup successfully discretises the action space and allows us to use deep Q
learning for this problem. The fact that we have done this will undoubtably have an
adverse affect on the performance of the agent. As such, if one used an approach that
is designed for continuous action spaces, we would expect a fairly large increase in
performance.

State encoding

The second difficulty we were presented with is the fact that we must give a fixed
size state encoding to the neural network. As previously stated, our state encoding is
the co-ordinate values of the shooter, the humans and the zombies. However, as time
progresses, both humans and zombies die and, thus, we no longer have co-ordinates
for them. This means that the actual state representation reduces in size. However, we
just noted that we must present a fixed length state encoding to our neural network.

We decided to solve this in the following way: every human and zombie is allocated
an ID number, this ID corresponds to their position in the state encoding. While the
human or zombie is alive, their normalised co-ordinate values appear at the location
corresponding to their ID. When they die each of their co-ordinates are replaced with
-1. For example, the state encoding s0 depicts a state that contains one shooter, one
human and one zombie, and the state encoding s1 depicts a state where the zombie
has died:

s0 = [ 0.25 0.2 0.1 0.1 0.3 0.25 ]

s1 = [ 0.25 0.2 0.1 0.1 −1 −1 ].

This solves the issue and gives us a fixed length state encoding. This does imply
that the maximum number of humans and zombies that can exist at once must be
defined before the network is trained. This size encoding must be used throughout
training and when the agent is deployed to complete the task. We replace the co-
ordinates with -1 because this is the normalised point farthest away from all other nor-
malised co-ordinates (recall that our environment only consist of positive normalised
co-ordinates). The hope is that the agent either realises that -1 means that the human
or zombie is dead, or the agent thinks that this entity is far enough away that it need
not be paid attention to. We asked international acclaimed industry professionals what
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they would have done in this situation and they confirmed that this was the approach
they would have followed.

The downside of this solution is that our state encoding is usually quite informa-
tionally sparse. This makes it more difficult for our agent to learn good policies and
increases the time it takes to for propagation through our neural network as the input
layer must be the same size as the state encoding. In Chapter 11 we critically assess
this decision.

Large Simulation Memory Leaks

Originally we used a single Python script to train many networks to find architectures
and learning rates that provided good performance. However, we quickly noticed that
the models were taking much longer to train than expected and that the memory being
used by the script was far more than was to be expected. We guessed that a memory
leak was taking place and noted that if the Python interpreter is exited regularly, these
problems vanish. Thus, we changed the Python script to accept command line argu-
ments that determine the network architecture. We then wrote a bash script to initiate
the Python script with the necessary command line arguments required to run all train-
ing sessions. Since the Python script was being called from the bash script, the Python
interpreter would terminate and restart between each call and this issue was resolved.
The original approach did not finish all training sessions when given a whole week.
The fixed version finished all training sessions in just over one day.

Bugs in Code

Despite good software engineering practices, errors are present in our code. A par-
ticularly devastating error had to do with the way the previously mentioned zombie
IDs mapped to the state encoding. The error resulted in the zombies usually not being
mapped to the state encoding at all. This bug went unnoticed for weeks. In the mean
time we were already getting fairly promising results from our agent that was able to
learn optimal policies on lower dimensional encodings in roughly ten minutes. Once
this bug was noticed and fixed, the agent was able to learn better policies on the same
encodings in less than two minutes. Our agent was essentially blind to zombies for
much of the project. We are quite pleasantly surprised that we were able to achieve
some decent results with the blind version. However, we are far more pleased with the
results of the corrected version.
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10.0.2 Optimisations

Throughout the development of the project we pushed to decrease agent training time.
Thus, we made a few significant optimisations, to the common practices in the field.
They are briefly described below and are analysed in more depth in the next chapter.

Reward Normalisation

We discuss experiments in which we assess the performance of our reward scheme as
laid out in Chapter 8. However, we noted that following the same scheme without the
normalising terms lead to the agent taking longer to converge to the optimal policy or
never converged to the optimal policy. This realisation lead us to develop the theory
that reward values should be normalised.

Environment Data Carry Over

Originally we designed our environment to compute the Fibonacci numbers, needed
to compute the score, at the time the environment is initialised. However, since the
maximum number of entities in the environment stays constant over all simulations
we realised that we need not recalculate this every time we initialise an environment.
Thus, we changed the environment to carry over the Fibonacci information when it is
reinitialised. This meant that the Fibonacci information would only be calculated once
per training session. This lead to a large reduction in training time.

10.0.3 Environment Generation

Originally we generated fixed numbers of humans and zombies to form the initial
state of our episodes. This resulted in our agent not generalising well. For instance:
as the level progresses more humans die than zombies (especially at the beginning of
training), thus, our agent will learn on these scenarios. For agents trained this way we
observed the agent acting erratically when the number of humans became greater than
the number of zombies. To solve this we randomly generated the number of humans
and zombies for initial states.
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10.0.4 Fixed Initial States

We observed that if we always provide the same initial state to our agent in training,
it learns the optimal policy for this configuration very quickly. This setup is similar to
the problem described in Human-level control through deep reinforcement learning, in
Chapter 2 as many Atari 2600 games always start in a particular state. If we constrain
our Code vs Zombies problem to do this we get considerably better results. However,
we lacked the time to adequately explore this approach.

Frame Skip

To allow for faster training and simulation, we use the frame-skipping technique de-
scribed in Chapter 2.

State Rolling

Because it is possible to determine exactly what will happening the following game
state if given the current game state, we did not employ state rolling. However, func-
tionality for it is integrated into our code.

During the development of this project, we encountered some implementation is-
sues, such as needing a fixed size state encoding and the fact that deep Q learning is
not suited to the Code vs Zombies problem. We discussed our solutions to these and
other implementation issues. We also made optimisations that improved performance
of our agent and reduced the time it needed to train.
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11 Experimental Investigation

In this chapter we will test what we have discussed in previous chapters on the prob-
lem described by Chapters 7 and 8. We will explain what we are testing, why it should
be tested and how it will be tested. We will then view and discuss the results of the
test. This chapter is arguably the most important chapter in this project report as it
confirms (or denies) what we have reasoned about throughout this report. We start
by explaining how our tests were performed and move onto specific tests related to
finding a good network architecture, the training of our agent, the actions our agent
can perform, how the scale of the Code vs Zombies problem affects performance and
then we present and test our final model.

We will use evidence to show: that network update delay outperforms target net-
work update delay, that full replay sampling outperforms random replay sampling,
the default action system performs better than all others and our reward scheme is
more effective than others, for our given problem.

11.0.1 Validation

During training, we periodically stopped the agent and validated it’s current policy.
This is a tricky process to do properly, it is subject to high variance and is time consum-
ing to do accurately. With this in mind, we designed a validation test that would rather
be less accurate (subject to higher variance) but would be relatively quick to complete.
We did not want to increase the time taken up by the training process. Thus, we per-
formed, what we call, light weight validation during training and after the model was
trained we performed validation that was more accurate and time consuming.

Light weight validation consisted of taking the agent’s average score over 100 episodes
of randomly generated initial states. The more accurate validation is the same but over
1000 episodes.

When selecting which model architectures to focus on, we looked at validation
scores (to see how well the model can perform) and validation scores divided by the
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time it took to train the agent (to see how quickly the model learns). Naturally, we look
for a good balance between pure performance and performance per time interval.

For most of the experiments done below, we used a constrained version of our
environment. The idea being that we need to try solve a small version of the problem at
hand before we can move onto the actual problem, a dynamic programming principle.
We used environments with a maximum of three humans and three zombies (and one
shooter - or agent). We also reduced the state encoding size to fit only these entities.
Thus, the state encodings where vectors of 2 + 2 ∗ 3 + 2 ∗ 3 = 14 in length, apposed to
the full problem which uses state encoding vectors of length 2 + 2 ∗ 99 + 2 ∗ 99 = 398.
We decided to use this constrained version of the problem as a prototype as it contains
the complex interactions with the scoring of the game while being small enough to
allow for more simulations to be run.

Each of the below experiments where repeated between three and twenty times, de-
pending on computational cost of the test, and figures are averaged over all data for the
give test. Thus, we can claim that the results are reproducible. However, even a set of
twenty tests does not form enough data to make a definitive claim as to whether these
results are truly representative. This must be taken into consideration when reading
through the rest of this chapter.

Note: the curves of some graphics have been smoothed to allow us to analyse the
underlying information more easily and accurately.

11.0.2 Network Architectures

Perhaps the most common question is machine learning is: “how big should the model
be?”. This is not an easy question to answer. The affect of network architecture on
model performance is somewhat of a mystery and findings do not necessarily gener-
alise to other cases. Thus, we pseudo-randomly generated network architectures and
tested them on our problem to see if patterns could be found. By pseudo-randomly
generated, we mean that we used insights we have gained from practical experience
with neural networks to ensure that we generated plausible candidates. The largest in-
sight used being that the layers generally decrease in size the deeper into the network
they are.

The process was as follows: generate a random number, l, to represent the num-
ber of hidden layers, sample l random numbers from a set of powers of two and sort
these numbers in descending order. We sample from a set of powers of two because
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generally this has the result of our layers exponentially reducing in size, allowing us to
have deeper networks. This sequence of numbers then represents the number of neu-
rons in each hidden layer. We train networks with these architectures via a logarithmic
scan over learning rates to find one that performs well for each architecture. We label
networks by the sequence of hidden layer sizes.

We require our networks to perform well and do so consistently. Figure 11.1 shows
us that the learning rate of a network has a great deal of influence over the performance
of the network. We also see that some architectures seem inherently unstable. Figure
11.1b shows drastic changes in score from very small changes in the learning rate.
Thus, this architecture is too inconsistent and we would not select it for our model. On
the other hand, Figure 11.1a shows consistently good performance for a large range of
learning rates. The network associated with Figure 11.1a is a candidate for our model
going forward.

(A) Stable Network (B) Unstable Network

FIGURE 11.1: We see two examples of logarithmic learning rate scans on
different networks. We see Figure 11.1a is stable as there is a cluster of
learning rates that provide similar score values. Figure 11.1b is unstable

as there is very large score variation for a small learning rate change.

We performed this test for seventeen different architectures. We then selected the
three learning rates that performed best for each network and retrained our agent with
each of them. We did this to ensure that we only continued our investigation with
architectures that perform consistently well. In Figure 11.2 we see final scores for dif-
ferent networks and their respective top three learning rates (each learning rate is a
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different colour). For instance, we rather select (1024, 512, 128, 128, 128, 64) as it per-
forms better and is more consistent than (512, 512, 128, 128, 64, 8) (Figure 11.2b).

(A) All Networks (B) Example Networks

FIGURE 11.2: The variation in score between networks for their top learn-
ing rates. Each colour represents a different learning rate for each network.
We see all networks and their variation in score, this is used to select the

top performing and most stable network-learning-rate pairs (11.2a).

Table 11.1 shows the networks and their respective learning rates we selected to
continue our investigation with.

TABLE 11.1: Top Performing Network Architectures and Corresponding
Learning Rates

Architecture Learning Rate
(512,) 0.0012574334296829354

(256, 128) 0.0012574334296829354

(256, 32, 16) 0.0012574334296829354

(512, 512, 256, 64) 0.001

(512, 64, 64, 32, 32) 0.001

(1024, 512, 128, 128, 128, 64) 0.0003353628856001657

11.0.3 Reinforcement Learning Techniques

Initially we tried to address the Code vs Zombies problem with Q learning. However,
it was simply not feasible. The agent found itself in states it had never seen before,
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and was unable to generalise from seen states, far too often. Consequently, we quickly
moved away from this method without gathering any performance results.

Moving to deep Q learning showed promising results and allowed us to do exper-
imental analysis of many other aspects within the approach. The first of which we
analyse is how the agent is trained.

11.0.4 Training Methods

The way we train our model has a large impact on its performance. Thus, we try find
the best way of doing so. Training methods can broadly be broken up into two classes,
online and offline learning. Online learning is when we update our model weights
after every state, with this state information. Offline learning is when we gather state
information over a number of episodes and update our model periodically with the
gathered data. Online learning was not feasible for our problem as updating the model
at every time step is computationally expensive and time consuming. We compared
methods that somewhat bridge the gap between offline and online learning, such as
experienced replay.

Experienced Replay

Experienced replay is the process whereby we gather state information and update
our model on some of the gathered data at every time step (Lin, 1993). Typically we
limit the number of data points we gather. This is because of memory limitations and
because older state information may not be as valuable as the newer state information
(as our agent is constantly improving it’s policy and moving towards more valuable
states). We call the store of the state information the replay memory. This is an effective
method and produces decent results. However, experienced replay is time consuming
and models tend to get stuck in local optima when using this method, a common prob-
lem with online learning methods.

Target Network Update Delay

As previously discussed, the paper Human-level control through deep reinforcement
learning, describes a method we call target network update delay. This method is
closer to offline learning as we only update our model after multiple episodes. In this
approach we keep two separate networks, a target and a prediction network. The
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prediction network is the model that the agent uses to predict how valuable a state
is and choose actions. Every time step the target network is then updated with the
information gathered by using the prediction network. As we are updating the target
network, not the prediction network, we are not changing the policy of the agent after
every update. Only after a number of updates to the target network, do we copy the
weights from the target network over to the prediction network and, thus, update the
policy. This prevents models from getting stuck in local optima and increases solution
stability. We call it target network update delay as a target network is used to delay the
updating of the prediction network.

Network Update Delay

Target network update delay produces decent results. However, we felt that there were
optimisations that could be made. Target network update delay requires one to use
two separate networks, meaning that one must store both sets of weights in memory
at the same time and one must periodically take time to copy the weights from one
network to the other. We decided to adapt target network update delay to use only
one network. We call our method network update delay.

In our approach we store the state information, gathered using our single network,
in replay memory over multiple episodes. After a number of episodes (see Appendix
D) we then train our single network using the replay memory. This deceptively simple
method gives us all the benefits of target network update delay while using approxi-
mately half the memory and saving computation time by not having to copy weights
from one network to another.

To compensate for the fewer number of updates to our network, we train using
more information from our replay memory. Training with more information at once
can often lead to more effective and faster training. Many computers are “starved”
of data and have more potential to parallelise the training, effectively taking the same
amount of time to train on more data.

From comparing the validation scores over a training session, we see that network
update delay seems to allow the model to learn more quickly and achieve a higher end
score than target network update delay (Figure 11.3). This suggests that our approach
may be better but we cannot make this claim yet.
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(A) Validation score over 5000 episodes

(B) Validation score over 35000 episodes

FIGURE 11.3: Validation scores being tracked over time during training
for the two training methods. We see that network update delay seems to

promote faster learning and deliver better performance.

Our claim becomes much stronger when comparing the two update methods for
multiple network architectures (Figure 11.4) For every network we tested, our ap-
proach achieved a higher end score and trained in less time. We also see that the
performance is somewhat more consistent, as stated previously, this is a desirable trait.
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(A) Scores (B) Training Times

FIGURE 11.4: The variation in score (11.4a) and time (11.4b) when com-
paring the network update delay method (in red) to the target network
update delay method (in green). We see that network update delay seems

to achieve far better scores in substantially less time.

Naturally, many more tests must be done and other domains need to be used to
assess whether our approach is truly better. However, for our problem, we can be rea-
sonably certain that network update delay outperforms target network update delay.

Random Replay Memory Sampling

We call the data actually used to train the model the actual replay memory. Typically
one samples the replay memory with a uniform random chance to form the actual
replay memory and then updates the network with the actual replay memory. By an
informal inspection, we noticed that the random sampling of the replay memory took
up a large portion of the training time. Thus, we thought of seeking ways of forming
the actual replay memory that were less computationally expensive.

Full Replay Memory Sampling

Our first thought was simply to reduce the size of the replay memory and to take the
replay memory and use it as the actual replay memory, thereby training on all of the
data in it. We call this approach full replay memory sampling.

Our approach seems to slightly out perform random replay sampling (Figure 11.5).
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FIGURE 11.5: Validation scores being tracked over time during training
for the two sampling methods. We see that full replay sampling seems to

promote slightly faster learning and deliver better performance.

The benefits of full replay sampling over random replay sampling boast lower vari-
ation in scores and training times as well as consistently achieving better scores with
less time spent training.

(A) Scores (B) Training Times

FIGURE 11.6: The variation in score (11.6a) and time (11.6b) when com-
paring the full replay sampling method (in red) to the random replay
sampling method (in green). We see that network update delay seems

to achieve better scores in less time.
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There is strong evidence that full replay sampling is better than random replay
sampling for our problem. More research would need to be done to determine if our
approach is better in other domains.

Note: we ensured the actual replay memory was the same size for both approaches,
thus, we increased the replay memory size for the random replay memory sampling
approach test.

11.0.5 Action Systems

Now we come to the section that tells us if we discretised our action space in an intel-
ligent way. As discussed previously, deep Q learning is designed for discrete actions
spaces. Thus, we gave our agent a discrete representation of the action space in the
form of four actions, moving towards each of the corners of the rectangular environ-
ment space. We refer to this as the default action system. This seems like a very im-
portant decision to make and one that would impact the overall performance of the
agent.

To know if this was a good decision or not we tested it against three other ap-
proaches. The first alternative approach is the same as the default except for one thing,
we give the agent the option of remaining stationary. We refer to this as the default
static action system. The idea behind this decision being that there are scenarios where
it is the optimal action not to move and our agent was otherwise incapable of perform-
ing this action. The second alternative method was to give the agent eight points it
could move towards, the four corners and the points in between adjacent corners. We
refer to this approach as the larger action system. The thought behind this method
being that the agent now has far more control in which direction it can move, allowing
it to choose shorter paths between targets. The final approach we tried was the same
as the larger action system but we added the action to be stationary. We call this the
larger static action system.

In general, we see that the default action system offers the best scores and does so
in the least training time. It is interesting to note that the larger static action system
seems to offer the most consistent performance. Training times and scores seem to
vary much less when using the larger static action system. While this is desirable, the
default action system seems to offer a large chance that the lowest score achieved will
be higher than the highest score achieved by the larger static action system (Figure
11.7).
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(A) Scores (B) Training Times

FIGURE 11.7: The variation in score (11.7a) and time (11.7b) when com-
paring the default (in red) default static (in green), larger (blue) and larger
static (black) methods. We see that the default action system seems to out

perform all other methods in terms of score and training time.

These results indicate that we discretised our action space in an intelligent manner.
This is reassuring as it shows that deep Q learning may not have been as ill suited to
this problem as we once thought.

11.0.6 State Encoding Size

A large concern throughout the development of this project was weather the agent
would be able to solve the problem when given the full state encoding. We saw from
previous tests that the agent performs quite well when we give it smaller state rep-
resentations but we wondered how the size of these encodings affected performance.
Thus, we set up tests where linearly increased the size of the state encodings and ob-
served the performance of the agent. These tests become very computationally expen-
sive, thus, we only generated environments containing one human and one zombie
(and a shooter - or agent). We label the sate encoding as 99, for example, if there are 99
places for humans and 99 places for zombies in the state encoding.

We see that larger networks either achieve optimal performance or perform very
poorly. The network that achieved the highest number of optimal performances on
different encoding sizes was (1024, 512, 128, 128, 128, 64), with optimal performance
up to state encoding 39 (Figure 11.8a). The smaller networks were able to achieve
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performance that was above random and below optimal. The network that achieved
above random score on the most different state encodings was (256, 32, 16), with above
random performance up to state encoding 79. However, we see that network (256,
32, 16) was not able to achieve score above random level for state encoding 69 (Figure
11.8b).

(A) Most tests at optimal

(B) Most tests above random

FIGURE 11.8: Validation scores for different state encoding sizes. We see
that none of the networks were able to achieve an optimal score on the
full state encoding size, 99. However, the smaller networks seem to have

a higher chance of doing so.

This test does not bode well. It seems that the networks are unable to detect single
co-ordinate pairs as the size of the state encoding grows. This means that our agent
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will not be able to make use of all the state information it is presented with and will
not be able to solve the problem at full scale.

11.0.7 Architecture Selection

We now take all we have learnt from the previous experiments and attempt to deter-
mine which of the architectures we have been testing is the best for our problem. To
do so we compare the architectures with each other and with two other agents. We
compare with an agent that performs random actions and an agent that uses a prede-
termined heuristic. These two serve as our random and approximate optimal threshold
bands. Ideally we would like our agent to perform on the level of, or better, than the
approximate optimal agent. If an architecture does not perform better than random it
must be immediately discarded and our approach may need to be reconsidered.

When looking at the smallest version of our problem (the case where there is one
human, one zombie and state encodings are of length 6) we see that the larger networks
initially learn much faster than the smaller ones. However, almost all networks con-
verge to the approximate optimal policy at the same point (Figure 11.9). This makes
it difficult to definitively say which architecture is best. We must move onto testing
larger versions of our problem.

FIGURE 11.9: Validation scores being tracked over time during training
for multiple architectures for the smallest version of our problem. All net-
works converge to approximate optimal performance relatively quickly.

In the validation sized version of our problem we see that the performance differ-
ences between the various architectures become clear. Networks (1024, 512, 128, 128,
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128, 64) and (512, 512, 256, 64) perform similarly and clearly outperform the rest of
the networks. The smaller networks only just do better than average, which is a large
concern. Another concern is that non of the networks comes near to the approximate
optimal performance. Before discarding these networks, it is important to note that
it seems that near the end of training all networks were still climbing in performance
(Figure 11.10). Thus, we must try the same test with more training episodes.

FIGURE 11.10: Validation scores being tracked over time during training
for multiple architectures for our problem at validation size. We see that
no networks converge to the approximate optimal score. However, the

larger networks certainly outperform the smaller ones.

We see a large contrast in results when increasing the number of training episodes.
All networks now do substantially better than the random agent. However, the smaller
networks seem to stabilise on a suboptimal score. It seems that networks (1024, 512,
128, 128, 128, 64) and (512, 512, 256, 64) will converge to the approximate optimal
score if given enough training data. However, learning becomes very slow after the
the thousandth episode (Figure 11.11). From this we can assume that the next course
of action would be to try a larger architecture. From what we have seen in the past, the
larger architectures learn quicker, in terms of number of episodes, and achieve higher
final scores. Before we can confidently move onto larger networks, we have to take
more information into account.
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FIGURE 11.11: Validation scores being tracked over time during training
for multiple architectures for our problem at validation size. We see that
given more training episodes increases the likelihood of networks achiev-

ing approximate optimal performance.

We need to take maximum score and time taken to train into account. Thus, we
look at score divided by time to get a score per second value. We see that the (512,
512, 256, 64) network outperforms the (1024, 512, 128, 128, 128, 64) network in terms
of maximum score reached and score per second return (Figure 11.12). This indicates
that the process of choosing an architecture is not as simple as “bigger is better”.
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(A) Scores (B) Score Divided By Training Time

FIGURE 11.12: The maximum scores achieved by (Figure 11.12a) and the
maximum score divided by the time taken to train (Figure 11.12b) each
network. We see that larger networks reach higher maximum scores but

have lower score per second return.

It seems that the larger the network, the more information we must give it before
its validation score stabilises, its score usually stabilises at a higher value but it takes
longer to train. Not only that, some networks that are reasonably smaller perform
better than the bigger ones.

11.0.8 Reward Systems

Before finalising our architecture we wanted to conduct one final test. We wanted to
ensure we have selected a good reward scheme. A reward scheme that promotes quick
learning. Until now we had used the reward scheme defined in Chapter 8. For this test
we decided to use the scheme described in Chapter 2. Thus, we gave rewards only
consisting of +1 (for a round where a zombie is killed), -1 (for a round when a human
is killed) and zero otherwise. We call this the simple reward system.

We see that all networks trained using this scheme performed exceptionally poorly
(Figure 11.13). This reward system does not convey the nuances of the problem and,
thus, the agent is unable to learn a good policy from it.
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FIGURE 11.13: Validation scores being tracked over time during training
for the simple reward system. We see that our agent performs very poorly.

This reinforces the idea that reward functions are extremely important. Our agent’s
learning ability is only as good as the information conveyed to it.

11.0.9 Chosen Architecture and Techniques Results

We now take all techniques from our previous tests that outperformed the others and
apply them to see how well our agent performs. For our final agent we select network
(512, 512, 256, 64) as it outperforms all other networks in terms of high performance
with low training time. We left this agent to train on 150 000 episodes on the validation
size problem and recorded the results. We see that network (512, 512, 256, 64) does
not achieve approximate optimal score in this time. It seems as though it make tend
towards it but this may take an infeasible amount of time (Figure 11.14).
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FIGURE 11.14: Validation scores being tracked over time during training
for network (512, 512, 256, 64). We see that it quickly outperforms the

random score but does not achieve approximate optimal score.

This is a disappointing result. If our agent cannot achieve approximate optimal
score on a constrained version of the Code vs Zombies problem, it will not be able to
achieve optimal score on the full problem. Reluctant to admit defeat, we made one last
effort. We constructed a very large architecture in the hope that it could overcome the
limitations of all the smaller ones that we have been dealing with up to thus far. We a
network with hidden layers (1024, 1024, 512, 512, 256, 256, 128, 128, 64, 64, 32) for 150
000 episodes and recorded the results. We see that, while it learnt faster (per episode),
it did not do any better than network (512, 512, 256, 64) (Figure 11.15).
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FIGURE 11.15: Validation scores being tracked over time during training
for network (1024, 1024, 512, 512, 256, 256, 128, 128, 64, 64, 32). We see that
it quickly outperforms the random score but does not achieve approxi-

mate optimal score.

We are forced to concede and admit that our agent cannot solve the Code vs Zom-
bies problem as it cannot solve all constrained versions thereof. With this test we are
reminded: “bigger is not always better”.

We went through comprehensive experiments and their results and can now draw
our conclusions. We used evidence to show: that network update delay outperforms
target network update delay, that full replay sampling outperforms random replay
sampling, the default action system performs better than all others and our reward
scheme is effective, for our given problem. We also showed that our agent cannot
achieve optimal performance on some constrained versions of the Code vs Zombies
problem and, thus, cannot solve the full Code vs Zombies problem.
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12 Conclusions and Recommendations

We have gone through a large amount of information in this project report. Thus,
this chapter serves as a brief overview of what was learnt, discussed and what further
work could be done on this topic. First we will go through the main learnings: what
reinforcement learning is, what approaches exist in reinforcement learning and what
deep Q learning is. Then we will discuss the conclusions we can draw from the re-
port, mostly surrounding the effectiveness of deep Q learning on the Code vs Zombies
problem. Finally, we discuss follow on work, such as taking a policy search approach,
adding a internal model of the environment and testing this project’s agent on other
problems.

12.0.1 Learnings

We have learnt that reinforcement learning is the branch of machine learning that deals
with sequential decision making and behaviour learning. We discussed the three main
approaches in reinforcement learning: value-based (deriving policies based on the de-
sirability of states), model-based (learning an internal model of the environment) and
policy search (directly learning behaviours). We saw that deep Q learning is a value-
based approach where we use a neural network to approximate the action-value func-
tion, Q.

12.0.2 Conclusions

We saw that despite deep Q learning being designed for a discrete action space, it per-
forms quite well on our Code vs Zombies problem once we have discretised the action
space. We noted that network update delay outperforms target network update delay,
that full replay sampling outperforms random replay sampling, the default action sys-
tem performs better than all others and our reward scheme is effective, for our given
problem. We also showed that our agent cannot achieve optimal performance on some
constrained versions of the Code vs Zombies problem and, thus, cannot solve the full
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Code vs Zombies problem. As such, our program completes all objectives for some
constrained versions of the problem (the case where there is one zombie and one hu-
man is one example there of). However, our program only completes the most basic
objective on the full problem as it always produces valid actions.

12.0.3 Recommendations for follow up work

Reinforcement learning is a very active field at the moment. While working on this
project there were multiple large milestones achieved by the community, including the
creation of AlphaGo Zero, the best Go playing program in the world. Thus, there are
many ways one could extend the work done for this project.

Policy Based Approach

As previously discussed, a natural progression of this work would be to try a policy
search based approach instead of a value-based approach as policy search approaches
allow continuous action spaces. This is due to the fact that policy search methods
perform well on high dimensional environments and continuous actions spaces, two
key areas where our agent is lacking. We recommend looking at the paper Continuous
control with deep reinforcement learning (Lillicrap et al., 2015). That paper describes
state of the art policy search methods.

Model Decomposition

The agent this report discusses uses a single neural network that must form some un-
derstanding of the state vectors that are presented to it and predict action-value pairs
based on those. Once could try splitting the model into two neural networks: a fea-
ture extractor and an agent. It would be the job of the feature extractor to understand
how the state vectors work and to present a lower dimension encoding to the agent
network. The agent network can then be much smaller than the network used by this
report and can solely focus on action-value pair prediction. We recommend using an
auto-encoder for the feature extractor as it is a type of neural network that is designed
to do exactly that (Hinton and Salakhutdinov, 2006). The approach to create the agent
network would not change from the approach followed in this project report at all,
the only difference is the agent network takes the output of the feature extractor as its
input (as its state).
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Model-based Approach

One could also try build an internal environment model that the agent uses to plan
sequences of actions. This couples quite nicely with using a feature extractor as one
would prefer to learn a transition function for a lower dimensional representation of
the state. We recommend looking at the paper Imagination-Augmented Agents for
Deep Reinforcement Learning (Weber et al., 2017). With this one can achieve state of
the art results.

Multiple Environments

One could take the agent that was created for this project and try to apply it to other
problems or environments. It would be interesting to see if this agent generalises to
other domains. If we had more time we would have done so. If this agent does not
adapt well to another problem, one could investigate why it is so and what changes
could be made to allow the agent to solve both problems. We recommend looking for
problems on the CodingGame.com website, there are many to choose from and they
are all quite interesting.

General Adversarial Networks

Generative adversarial networks have been producing state of the art results in inter-
esting domains. One could try apply them to this problem and agent. The setup could
look something like the following: the agent remains essentially the same as the one
created in this project, the difference being that we introduce a model (the adversarial
network) that generates game configurations for the agent to learn from (Halbritter,
2017). As training progresses the agent scores higher on the generated levels but the
adversarial network attempts to generate more difficult configurations. Thus, the dif-
ficulty level is somewhat regulated such that it matches the agents capabilities and
promotes efficient learning.

Learning Approaches

One could try more advanced learning techniques such as curriculum learning (start-
ing with a basic example of the problem that the agent learns to solve and then progres-
sively making the problem more complex as the agents policy becomes better) (Bengio
et al., 2009), hierarchical learning and symbolic task acquisition (learning higher level
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actions, for instance: instead of learning the action “walk towards the zombie”, the
agent learns the action “go and kill the zombie”) (Andersen and Konidaris, 2017) and
inverse reinforcement learning (the agent learns by watching the behaviour of an ex-
pert solving the given problem) (Ng and Russell, 2000).

Decision Understanding and Visualisation

One could try understand what it is that the agent has learnt. One way to go about
this would be to create a visual representation of the neural network and the weights
and animate it alongside the environment as the agent interacts with it. We are at a
stage in reinforcement learning where we understand that these approaches work but
we do not always understand why or what was learnt by the agent. It would be very
beneficial to the community if real progress was made on methods to gain that sort of
insight.
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A Project Planning Schedule

This appendix serves the purpose of showing the examiners the planned against the ac-
tual activities and durations for this project. We can see that all but two of the planned
activities were completed. The two that were not completed were deemed to add noth-
ing extra too the project and would have hindered other areas. We can see that most
tasks took much longer than expected. This would have lead to the project not being
finished had it not been for the tasks that started earlier than planned. We can see that
once we started work on the code, we did not stop making changes and optimisations
until very close to the end of the project (Figure A.1).

FIGURE A.1: Gantt chart showing planned and completed progress on
this project. We see that most activities took longer than planned but the

project was still completed on time.
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B Outcomes Compliance

This appendix serves the purpose of informing the examiners of the Engineering Coun-
cil of South Africa (ECSA) outcomes that must be assessed in this project and will “state
explicitly how each of the relevant ECSA outcomes were achieved during the execution
of this project” (Botha, 2017).

B.0.1 ELO 1 - Problem Solving

What is Satisfactory Performance?

Using the assessment material and opportunities, the student must show that he/she
applied a systematic problem solving method to a complex engineering problem which
required specialised engineering knowledge at a level consistent to that which a grad-
uate would participate in an employment situation shortly after graduation. In his
approach, the student must show that he/she understands and can follow a system-
atic technique which includes the following steps:

1. analysis of the problem

2. identification of the criteria for an acceptable solution, necessary information,
and required engineering skills and knowledge

3. generation and formulation of possible approaches to the solution of the problem

4. modelling, analyses and evaluation of possible solution(s), and selection of the
best solution

5. formulation and presentation of the solution in an appropriate form

(Botha, 2017)



84 Appendix B. Outcomes Compliance

What Did the Candidate do to Satisfy this Outcome?

1. Chapters 7 and 8 show an in depth analysis of the problem. The candidate iden-
tifies the underlying goals of the problem, how the information is to be encoded
and how the nature of the problem affects the techniques one would use.

2. In Chapter 1 the candidates discusses possible milestones for the performance
level of the agent. In Chapter 11 the candidate then updates his notions of what
is realistically reachable by investigating the limiting factors and showing perfor-
mance of his program against the lower milestones set in Chapter 1. The candi-
date develops and investigates the engineering knowledge needed to solve the
problem in Chapters 3, 4, 5 and 6 by looking at the mathematical formulations of
the approaches.

3. The candidate largely discusses this in chapter 3 by discussing the different ap-
proaches in reinforcement learning and what their strengths and weaknesses are.

4. In Chapter 11 the candidate conducts numerous experiments on multiple pos-
sible solutions and discusses the performance of each of them. This is largely
done by experimental analysis of different network architectures and their per-
formance.

5. The candidate presents the final model approach in Chapter 6 and presents the
finer details of the approach in Chapter 11. He does so by describing what deep
Q learning is, using the knowledge we gathered throughout the project report,
and then defining the specifics of the deep Q learning model and techniques he
used. The presentation of the final hyper-parameters can be found in Appendix
D.

B.0.2 ELO 2 - Application of Scientific and Engineering Knowledge

What is Satisfactory Performance?

Using the assessment material and opportunities, the student must show that he/she
has applied mathematical, scientific and engineering knowledge systematically to a
problem at a level consistent to that which a graduate would participate in an employ-
ment situation shortly after graduation. The student must show that he/she:
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1. used mathematical techniques and/or numerical analysis and/or statistical knowl-
edge and methods on engineering problems by:

(a) applying formal analysis and modelling of engineering components, sys-
tems or processes

(b) communicating concepts, ideas and theories with the aid of mathematics

(c) reasoning about and conceptualising engineering components, systems or
processes using mathematical concepts

(d) and/or dealing with uncertainty and risk through the use of probability and
statistics

2. used physical laws and knowledge of the physical world as a foundation for the
engineering sciences and the solution of engineering problems by:

(a) applying formal analysis and modelling of engineering components, sys-
tems or processes using principles and knowledge of the basic sciences

(b) reasoning about and conceptualising engineering problems, components,
systems or processes using principles of the basic sciences

3. used the techniques, principles and laws of engineering science at a fundamental
level and in at least one specialist area to:

(a) identify and solve open-ended engineering problems

(b) identify and pursue engineering applications

(c) and/or work across engineering disciplinary boundaries through cross dis-
ciplinary literacy and shared fundamental knowledge

(Botha, 2017)

What Did the Candidate do to Satisfy this Outcome?

1. used mathematical techniques and/or numerical analysis and/or statistical knowl-
edge and methods on engineering problems by:

(a) In chapter 3 the candidate explains that we model the interaction between
the environment and the agent as Markov decision processes and explains
the benefits it brings in terms of analysis.
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(b) The candidate formulates concepts such as the reward, transition and value
functions in Chapter 3 using mathematics and then explains these formula-
tions so that we gain an intuitive understanding of them.

(c) The candidate formulates the first order Markov assumption mathemati-
cally in Chapter 3. This very assumption reasons that our next state is de-
pendent on only our current state and not all previous states.

(d) In chapter 3 the candidate formulates functions (such as the value and tran-
sition functions) stochastically so that our agent learns how to deal with
uncertainty in our systems.

2. used physical laws and knowledge of the physical world as a foundation for the
engineering sciences and the solution of engineering problems by:

(a) The candidate largely does this in the code he has written but briefly ex-
plains in Chapter 9 that he was required to write a model of an environment
that took physical laws into account. The environment facilitated certain ac-
tions, between entities in the environment, that take place when the distance
between them is small enough. This changes entity trajectories and the state
of the environment.

(b) In chapter 10 the candidate gives an outline of engineering problems he en-
countered in the development of the project. He goes on to reason about,
and give solutions to, them. An example of this is when he was required to
make optimisations to code so that it would execute in a reasonable amount
of time. This takes scientific knowledge of the fundamental operations the
programming language and the computer support.

3. used the techniques, principles and laws of engineering science at a fundamental
level and in at least one specialist area to:

(a) The candidate identifies and solves a problem with how the state of the
game is to be represented in Chapters 8, 10 and 11. This is a problem that
few in the reinforcement learning community have come across and fewer
have tried to solve.
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(b) The candidate identified a number of problems that were easily solved by
engineering applications. An example thereof is in Chapter 9 when the can-
didate applies dynamic programming to create a function that efficiently
calculates Fibonacci numbers.

(c) A large portion of the work done in the reinforcement learning field is done
by computer scientists and mathematicians. Thus, the candidate war re-
quired to enter those spheres and study the literature. This is outlined in
Chapters 3, 4, 5 and 6.

B.0.3 ELO 3 - Engineering Design

What is Satisfactory Performance?

Using the assessment material and opportunities, the student must show that he/she
has performed design and synthesis of components or systems at a level consistent to
that at which a graduate would participate in an employment situation shortly after
graduation. The student must show that he/she:

1. Identified and formulated the design problem to satisfy user needs, applicable
standards, codes of practice and legislation

2. Planned and managed the design process – focusing on important issues, while
recognising and dealing with constraints

3. Acquired and evaluated the requisite knowledge, information and resources, ap-
plied correct principles, and evaluated and used design tools

4. Performed design tasks including analysis, quantitative modelling and optimisa-
tion

5. Evaluated alternatives and preferred solutions, exercised judgment, and tested
implementation ability

6. Assessed impacts and benefits of the design in terms of social, legal, health,
safety, and environmental aspects (in the case of Project 448)

7. Communicated the design logic and information

(Botha, 2017)
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What Did the Candidate do to Satisfy this Outcome?

1. In Chapter 7 the candidate identifies the problem and in Chapter 8 he formulates
it such that it meets the needs of the techniques and standards involved.

2. The project plan is shown in Appendix A. It shows the original plan and the
actual events. The candidate also discusses design processes, choices and con-
straints in Chapter 10. A specific example there of is the fact that the candidate
acknowledges and works around the fact that deep Q learning is designed for a
discrete action space.

3. The candidate cites many sources throughout the report and makes specific ref-
erences to the application program interfaces and design tools used for the de-
velopment of this project in Chapter 9.

4. The candidate was required to design software and has shown his abbreviated
design in Chapter 9. He also shows the steps in designing the end model by
taking the reader through the results from the experimental analysis in Chapter
11.

5. In Chapters 10 and 11 the candidate discusses alternative models or approaches,
judgements made, preferred solutions and tested implementations of different
networks.

6. Impacts society of reinforcement learning are discussed in Chapters 1 and 3. He
comments that it is already being used to improve health care but there is still
much discussion on the safety of artificial intelligence that is on going.

7. Chapters 10 and 11 largely communicate the candidate’s design logic and the
information thereof. However, this report serves as a design guide itself.

B.0.4 ELO 4 - Investigations, Experiments and data analysis

What is Satisfactory Performance?

Using the assessment material and opportunities, the student must show that he/she
has designed and conducted investigations and experiments at a level consistent to
that which a graduate would participate in an employment situation shortly after grad-
uation. The student must show that he/she:
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1. Planned and conducted investigations and experiments

2. Conducted a literature search and critically evaluated material

3. Performed necessary analyses

4. Selected and used appropriate equipment or software

5. Analysed, interpreted and derived information from data

6. Drew conclusions based on evidence

7. Communicated the purpose, process and outcomes verbally (in Design 314) or
verbally and in a technical report (in Project 448)

(Botha, 2017)

What Did the Candidate do to Satisfy this Outcome?

1. The candidate has shown his project plan in Appendix A and described his in-
vestigations and experiments in 11.

2. Chapter 2 serves as a study of a specific piece of literature and Chapters 3, 4, 5 and
5 cover a wide range of other literature on the topic of reinforcement learning.

3. The candidate performed a great deal of analysis on the problem in Chapter 8
and fully analysed the results of experiments in Chapter 11.

4. In Chapter 9 the candidate discusses the software tools and application program
interfaces he used.

5. The candidate analyses, interprets and derives information from the raw data
acquired from experiments and this is discussed in Chapter 11.

6. In Chapter 11 the candidate draws many conclusions from based on the test re-
sults. An example of a conclusion he makes is that network update delay works
better than target network update delay on the Code vs Zombies problem.

7. The candidate included a written account of objectives that this project and project
report are to meet in Chapter 1.
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B.0.5 ELO 5 - Engineering Methods, Skills and Tools, Including In-

formation Technology

What is Satisfactory Performance?

Using the assessment material and opportunities, the student must show that he/she
has designed and conducted investigations and experiments at a level consistent to
that which a graduate would participate in an employment situation shortly after grad-
uation. The student must show that he/she:

1. Used methods, skills or tools effectively by appropriate selection, proper appli-
cation and critical assessment of the results

2. Created computer applications as required

(Botha, 2017)

What Did the Candidate do to Satisfy this Outcome?

1. The candidate discusses methods used to make optimisations in Chapter 10. He
also discusses skills used in development of the project in Chapter 9. Finally, he
uses application program interfaces to present the data in an effective manner in
Chapter 11.

2. In Chapter 9 the candidate outlines the core computer applications he developed
and in Appendix C he outlines all programs he created for this project.

B.0.6 ELO 6 - Professional and Technical Communication

What is Satisfactory Performance?

Using the assessment material and opportunities, the student must show that he/she
can generate a long professional project report (10000-15000 words) and can defend
the quality of his/her work during an oral examination. For written work, the student
must provide evidence of:

1. The use of appropriate structure, style and language for purpose and audience

2. The use of effective graphical support
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3. Application of technologically advanced methods of providing information

4. Meeting the requirements of the target audience

(Botha, 2017)

What Did the Candidate do to Satisfy this Outcome?

1. The intended audience for this project report is researchers and other intellectuals
and the candidate has structured his language accordingly throughout the entire
report.

2. The candidate has used figures and graphics extensively throughout the report
but most helpfully in Chapter 11 when visualising experiment data.

3. Novel ways of graphically representing experimental results were used in Chap-
ter 11. An example of this is the score and time variation plots.

4. The candidate recognised that that target audience may not have an extensive
machine learning background and training. Thus, he explained all concepts start-
ing with relatively basic ones in Chapter 1 and expanded on those same concepts
throughout the report. The more basic elaborations are found in Chapter 3.

B.0.7 ELO 9 - Independent Learning Ability

What is Satisfactory Performance?

Using the assessment material and opportunities, the student must show that he/she
has developed the ability to acquire knowledge in an independent fashion, apply such
knowledge, and take responsibility for learning requirements. The student must show
that he/she can:

1. Reflect on own learning and determine learning requirements and strategies

2. Source and evaluate information

3. Access, comprehend and apply knowledge acquired outside formal instruction

4. Critically challenge assumptions and embraces new thinking

(Botha, 2017)
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What Did the Candidate do to Satisfy this Outcome?

The candidate would like to preface the specific answers given below by informing the
examiner that there are no courses offered at his university that cover reinforcement
learning and there are exceptionally few researchers at his university that deal with
reinforcement learning. All knowledge pertaining to reinforcement learning in this
project report was obtained by the candidate through self research and study. The
candidate even attended a conference to obtain more knowledge on the field.

1. The candidate reflects on choices made and knowledge gathered in Chapter 12,
especially with regard to the approach of policy search, which would most likely
have been a better approach to the Code vs Zombies problem.

2. Chapters 3, 4, 5 and 6 contain many citations of the information the candidate
found during development of this project.

3. In Chapter 6 especially, the candidate outlines his understanding of deep Q learn-
ing and application there of. This knowledge was gained outside of formal in-
struction.

4. The candidate critically challenged some of the methods discussed in Chapter 2
and devises his own alternative approaches. These approaches and their results
are given in Chapter 11.
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C Code

Many programs were created for this project. This includes:

• a simulation environment for the Code vs Zombies problem

• a deep Q learning agent

• an interface object that facilitates communication between the environment and
the agent

• many scripts to run and record the results for the experimental investigation

• many scripts to plot the results of the experimental investigation

The code for the project can be found at: https://github.com/ElanVB/cvz_env

https://github.com/ElanVB/cvz_env
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D Hyper-parameters

TABLE D.1: Hyper-parameters

Hyper-parameter Value
test episodes 1000

validate episodes 100

batch size 32

replay memory size 3200

network update frequency 100

gamma 0.99

frame skip rate 4

optimizer Nadam

initial epsilon 1.0

final epsilon 0.1

epsilon decay 0.000045

activation ReLU

architecture (512, 512, 256, 64)

learning rate 0.001
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